• Title/Summary/Keyword: End-effector tracking

Search Result 51, Processing Time 0.035 seconds

Enhancement of Tracking Performance of Laser Tracking System for Measuring Position Accuracy of Robots

  • Hwang, Sung-Ho;Choi, Gyeong-Rak;Lee, Ho-Gil;Shon, Woong-Hee;Kim, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.61.5-61
    • /
    • 2001
  • The laser tracking system(LTS) presents the most promising technique for dynamic position measurement of industrial robots. This system combine the advantage of high accuracy with a contactless measurement technique. It is the measurement system of position in three dimensions using distance data obtained by laser interferometer and real time angle by tracking mirror assembly. After measuring the tracking error of the beam projected on the center of retroreflector in robot end effector, this system tracks the end effector continuously by adjusting tracking mirror angle to minimize this error ...

  • PDF

Study on robot end-effector tracking using structured laser pattern diode (구조화 레이저패턴다이오드를 이용한 Robot End-Effector 추적연구)

  • 조재완;이남호;이용범;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.523-526
    • /
    • 1996
  • In this paper, robot endeffector tracking using sensory information from structured laser pattern diode, is described. In order to track robot endeffector robustly irrespective of translation, scaling and rotation of robot working tool, structured laser pattern is used as track feature. Structured laser patterns of crosshair, concentric circles, dot matrix, and parallel lines are illuminated to robot endeffector. Illuminated laser patterns are held invariently and coherently irrespective of various motions of robot endeffector. Extracting and tracking these invariant structured laser patterns as track feature, the whole system keeps tracking of the robot endeffector robustly and effectively provided that structured laser pattern is always assumed to aim at robot endeffector.

  • PDF

Inverse dynamic analysis of flexible robot arms with multiple joints (다관절 유연 로보트 팔의 역동력학 해석)

  • 김창부;이승훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.254-259
    • /
    • 1992
  • In this paper, we propose an optimal method for the tracking a trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint equations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation of flexible planner manipulator is presented.

  • PDF

Applying the Robust Force Tracking Controller to assist the Sealing Robot System on a Concrete Surface (강인한 힘 추적 제어기를 적용한 콘크리트 표면 추종 로봇 시스템)

  • Cho, Cheol-Joo;Lim, Kye-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.389-396
    • /
    • 2016
  • The sealing robot must be able to calculate the slope of a contact surface for complete adherence of the sealing on different concrete shapes. After the slope is obtained, the robot will track on the surface of the concrete, but this process contains an error in the actual purpose of the force command. The reason this a phenomenon occurs, the non-linearity of the contact surface and the end-effector, is due to parasitic coupling. Errors like make it difficult to measure accurately the respective factors. Therefore, it is regarded as a disturbance that occurs when it follows the work surface it. In this paper, we selected the friction coefficient of the surface as a control factor and designed a compensator to reduce effects of disturbance. Finally, in view of the non-linearity of the end-effector of a robot to contact surfaces directly, we propose a robust force tracking controller in the finite range for managing disturbances that occur during the sealing.

Trajectory Tracking Performance Analysis of Underwater Manipulator for Autonomous Manipulation

  • Chae, Junbo;Yeu, Taekyeong;Lee, Yeongjun;Lee, Yoongeon;Yoon, Suk-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.180-193
    • /
    • 2020
  • In this study, the end-effector tracking performance of a manipulator installed on a remotely operated vehicle (ROV) for autonomous underwater intervention is verified. The underwater manipulator is an ARM 7E MINI model produced by the ECA group, which consists of six joints and one gripper. Of the six joints of the manipulator, two are revolute joints and the other four are prismatic joints. Velocity control is used to control the manipulator with forward and inverse kinematics. When the manipulator approaches a target object, it is difficult for the ROV to maintain its position and posture, owing to various disturbances, such as the variation in both the center of mass and the reaction force resulting from the manipulator motion. Therefore, it is necessary to compensate for the influences and ensure the relative distance to the object. Simulations and experiments are performed to track the trajectory of a virtual object, and the tracking performance is verified from the results.

Position error compensation of the multi-purpose overload robot in nuclear power plants

  • Qin, Guodong;Ji, Aihong;Cheng, Yong;Zhao, Wenlong;Pan, Hongtao;Shi, Shanshuang;Song, Yuntao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2708-2715
    • /
    • 2021
  • The Multi-Purpose Overload Robot (CMOR) is a key subsystem of China Fusion Engineering Test Reactor (CFETR) remote handling system. Due to the long cantilever and large loads of the CMOR, it has a large rigid-flexible coupling deformation that results in a poor position accuracy of the end-effector. In this study, based on the Levenberg-Marquardt algorithm, the spatial grid, and the linearized variable load principle, a variable parameter compensation model was designed to identify the parameters of the CMOR's kinematics models under different loads and at different poses so as to improve the trajectory tracking accuracy. Finally, through Adams-MATLAB/Simulink, the trajectory tracking accuracy of the CMOR's rigid-flexible coupling model was analyzed, and the end position error exceeded 0.1 m. After the variable parameter compensation model, the average position error of the end-effector became less than 0.02 m, which provides a reference for CMOR error compensation.

Strawberry Harvesting Robot for Bench-type Cultivation

  • Han, Kil-Su;Kim, Si-Chan;Lee, Young-Bum;Kim, Sang-Chul;Im, Dong-Hyuk;Choi, Hong-Ki;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.65-74
    • /
    • 2012
  • Purpose: An autonomous robot was developed for harvesting strawberries cultivated in bench-type systems. Methods: The harvest robot consisted of four main components: an autonomous vehicle, a manipulator with four degrees of freedom (DOF), an end effector with two DOFs, and a color computer vision system. Strawberry detection was performed based on 3D image and distance information obtained from a stereo CCD color camera and a laser device, respectively. Results: In this work, a Cartesian type manipulator system was designed, including an intermediate revolute axis and a double driven arm-based joint axis, so that it could generate collision-free motions during harvesting. A DC servomotor-driven end-effector, consisting of a gripper and a cutter, was designed for gripping and cutting the strawberry stem without damaging the strawberry itself. Real-time position tracking algorithms were developed to detect, recognize, trace, and approach strawberries under natural light conditions. Conclusion: The developed robot system could harvest a strawberry within 7 seconds without damage.

Robot Path Planning Method for Tracking Error Reduction (로봇의 추적오차 감소를 위한 궤적계획방법)

  • Kim, Dong-Jun;Kim, Gap-Il;Park, Yong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.143-148
    • /
    • 2001
  • A lot of robot trajectory tracking methods are proposed to enhance the tracking error, but irregular tracking errors are always accompanied and very hard to reduce it. Up to now, these irregular tracking errors are reduced by introducing more complicated control algorithms. But, it is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance instead of using more complicated control algorithms. By the characteristics of the robot, big tracking errors of the end-effector are generated mostly due to the fast moving of joint. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

An on-line measurement of robot tracking error via an optical PSD sensor (PSD센서를 사용한 로보트 추적 오차의 실시간 측정에 관한 연구)

  • 김완수;박용길;조형석;곽윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.433-437
    • /
    • 1988
  • Direct measurement of the relative position between the end effector of robot and moving objects reduces difficulties caused by the joint encoder reading and transformation. For those purpose, the on-line sensing method using PSD sensor was developed in this paper. The sensor was calibrated on the precision table. Then, the relative position of a moving objects on the conveyor was measured while the robot was tracking the one.

  • PDF

Design of DNP Controller for Robust Control of Auto-Equipment Systems (자동화 설비시스템의 강인제어를 위한 DNP 제어기 설계)

  • 조현섭
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.55-62
    • /
    • 1999
  • In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. In this paper, to bring under robust ard accurate control of auto-equipnent systems which disturbance, parameter alteration of system, uncertainty ard so forth exist, neural network controller called dynamic neural processor(DNP) is designed. Also, the learning architecture to compute inverse kinematic coordinates transfonnations in the manirclator of auto-equipnent systems is developed ard the example that DNP can be used is explained The architocture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simllations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.he DNP.

  • PDF