• Title/Summary/Keyword: End-bearing conditions

Search Result 76, Processing Time 0.034 seconds

Stator Current Processing-Based Technique for Bearing Damage Detection in Induction Motors

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1439-1444
    • /
    • 2005
  • Induction motors are the most commonly used electrical drives because they are rugged, mechanically simple, adaptable to widely different operating conditions, and simple to control. The most common faults in squirrel-cage induction motors are bearing, stator and rotor faults. Surveys conducted by the IEEE and EPRI show that the most common fault in induction motor is bearing failure (${\sim}$40% of failure). Thence, this paper addresses experimental results for diagnosing faults with different rolling element bearing damage via motor current spectral analysis. Rolling element bearings generally consist of two rings, an inner and outer, between which a set of balls or rollers rotate in raceways. We set the experimental test bed to detect the rolling-element bearing misalignment of 3 type induction motors with normal condition bearing system, shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. This paper takes the initial step of investigating the efficacy of current monitoring for bearing fault detection by incipient bearing failure. The failure modes are reviewed and the characteristics of bearing frequency associated with the physical construction of the bearings are defined. The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT, Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. The test results clearly illustrate that the stator signature can be used to identify the presence of a bearing fault.

  • PDF

Load-Deformation Relationship of Single Bolted Connections (단일볼트 지압접합부의 힘-변형관계)

  • Kim, Dae Kyung;Lee, Cheol Ho;Jin, Seung Pyo;Yoon, Seong Hwahn
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.341-352
    • /
    • 2017
  • Well designed group bolted connections can exhibit excellent ductile behavior through the bearing mechanism until the occurrence of shear rupture in the bolt or in the connecting plate. This excellent ductility can be utilized in favor of economical connection design. In this study, comprehensive tests on single-bolt bearing connections were conducted and analyzed considering bearing boundary conditions. The primary objective was to propose a generalized bearing strength and load-deformation relationship that can be used for designing group-bolted connections. To this end, new bearing strength formula, deformation limits as well as new load-deformation relationship were first proposed. Especially the proposed load-deformation relationship can reflect the stiffness, strength, and geometrical boundary conditions of the joint. The proposed formula and relationship are validated based on test results.

An Experimental Study on Bearing Capacity of Drilled Shaft with Mid-size (중구경 현장타설말뚝의 지지력 특성에 관한 실험적 연구)

  • Lee, Kwang-Wu;You, Seung-Kyong;Park, Jeong-Jun;Yun, Jung-Mann;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.263-272
    • /
    • 2019
  • This paper describes the results of bearing capacity using field loading test of pile, in order to extend the applicability of drilled shaft with mid-size, and the results were compared with the prediction results of design bearing capacity by empirical formular. The static load test result showed that the allowable bearing capacity of high pile strength was about 2.4 times higher than that of low pile strength. The dynamic load test result showed that the allowable bearing capacity of high pile strength was about 1.4 times~1.5 times higher than that of low pile strength. The comparison result of allowable bearing capacity between static and dynamic load test showed that the difference of allowable load ranged from 3% to 6% under the same settlement conditions. As a result of comparing the ultimate bearing capacity by load test and design bearing capacity, it was found that the FHWA proposed equation could be more reasonable than the other proposed equation in load sharing ratios of end bearing and skin friction.

Dynamic Characteristic and Fault Analysis of the CANDU Nuclear Fuel Channel (CANDU 핵연료 채널에 대한 동특성 및 결함증상 해석)

  • 박진호;이정한;김봉수;박기용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.345-349
    • /
    • 2003
  • The dynamic behavior of CANDU nuclear fuel channel was analyzed by the use of 3-dimensional finite element method, under the various fault conditions such as a fault in the end fitting support and the removal/migration of the garter spring in the fuel channel, in order to predict the dynamic behavior for a degraded symptoms of CANDU nuclear fuel channel. Moreover, the frequency response analysis for possible fault conditions was also peformed considering the effects of the pressure tube vibration and flow-induced vibration by the coolant flow. From the analysis of the frequency responses, defects in the garter spring have influenced the changes of 2nd and 3rd modes and all the important modes are varied for the failure in the journal bearing in the end fitting body.

  • PDF

Effects of Raft Flexibility on the Behavior of Piled Raft Foundations in Sandy Soil (사질토에 근입된 말뚝지지 전면기초의 기초판 연성률에 따른 거동 분석)

  • Song, Su-Min;Shin, Jong-Young;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.3
    • /
    • pp.5-16
    • /
    • 2023
  • The effect of raft flexibility on piled raft foundations in sandy soil was investigated using a numerical analysis and an analytical study. The investigation's emphasis was the load sharing between piles and raft following the raft rigidity (KR), end-bearing conditions. The case of individual piles and subsequently the response of groups of piles was analyzed using a 3D FEM. This study shows that the αpr, load-sharing ratio of piled raft foundations, decreases as the vertical loading increases and as the KR decreases. This tendency is more obvious when using friction piles compared to using end-bearing piles. The effect of raft rigidity is found to be more significant for the axial force distribution - each pile within the foundations has almost similar axial forces of the pile head with a flexible raft; however, each pile has different values with rigid rafts, especially with the end-bearing piles. The axial force of the pile base with floating piles shows similar point-bearing resistance for all the piles; however, it shows different values with end-bearing piles. The differential settlement ratio of rafts showed a larger value with lower KR.

Elastic Deformation Induced Preload Change in Tilting Pad Journal Bearing (탄성변형으로 인한 틸팅패드 저널베어링의 예압 변화)

  • Donghyun Lee;Junho Suh
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.102-110
    • /
    • 2023
  • This study aims to quantify the variation in the performance of a tilting pad journal bearing (TPJB) owing to the elastic deformation of its pad. To this end, we first defined a parameter, "elastic preload", and predicted the changes in the performance of the TPJB, as a function of the preload amount. We used the iso-viscosity Reynolds equation, which ignores the temperature rise due to viscous shear in thin films, and the resultant thermal deformation of the bearing structure. We employed a three-dimensional finite element model to predict the elastic deformation of the bearing pad, and a transient analysis, to converge to a static equilibrium condition of the flexible pads and journal. Conducting a modal coordinate transformation helped us avoid heavy computational issues arising from a mesh refinement in the three-dimensional finite element pad model. Moreover, we adopted the Hertzian contact model to predict the elastic deformation at the pivot location. With the aforementioned overall strategy, we predicted the performance changes owing to the elastic deformation of the pad under varying load conditions. From the results, we observed an increase in the preload due to the pad elastic deformation.

Bearing Capacity of Model Open -Ended Steel Pipe Pile Driven into Sand Deposit (모래지반에 타입된 모형 개단강관 말뚝의 지지력 분석)

  • Baek, Gyu-Ho;Lee, Jong-Seop;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.31-44
    • /
    • 1993
  • Model tests in calibration chamber with open -ended steel pipe pile have been performed in sand deposit to clarify effect of soil plug on bearing capacity, load transfer mechanisms in soil plug, and behavior of soil plug under dynamic and static conditions. Model piles were devised so that bearing capacity of open -ended pile could be measured separately into outside skin friction, inside skin friction due to soil plug -pile interaction and end bearing force on the section of steel pipe pile. It may be concluded, form the test results, that the plugging level of open -ended pile is more correctily defined by specific recovery ratio, y, rather than by plug length ratio, PLR, and the major part of inside skin friction is generated within the range of three times as long as the inner diameter of the pile from the pile tip. The ratio of inside skin friction to total bearing capacity is much larger than that of outside skin friction to total bearing capacity. Therefore, the bearing capacity of pile could not be well predicted, unless the inside skin friction is properly taken into account.

  • PDF

Machining characteristics of micro end-mill using high revolution (고속회전을 이용한 마이크로 엔드밀의 가공특성)

  • Kim, Kisoo;Kim, Sangjin;Cho, Byoungmoo;Kim, Hyeungchul
    • 대한공업교육학회지
    • /
    • v.31 no.2
    • /
    • pp.350-363
    • /
    • 2006
  • Recently, the micro end-milling processing is demanded the high-precise technique with good surface roughness and rapid time in milli-structure parts, micro machine parts and molding industry. The cutting conditions of micro end-milling has an effect on surface roughness of cutting surface. Therefore this study was carried out to cut stainless steel using high revolution air bearing spindle and micro end-mill and analyze the cutting condition to get the optimum surface roughness by design of experiment. From this study, surface roughness have an much effect according to priority on depth of cut, revolution of spindle and feed.

Finite Difference Modeling of a Piled Raft Foundation with Axisymmetry Condition and Interface Element (축대칭 조건 및 경계면 요소를 이용한 Piled Raft 기초의 유한차분 모델링 연구)

  • You, Kwang Ho;Kim, Hyung Ryul;Bae, Sang Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.853-861
    • /
    • 2015
  • In this study, FDM modelling with axisymmetry condition and interface element was verified whether it is reasonable to estimate compositive behavior of a piled raft foundation. To this end, the modelling validity of piled raft foundations was estimated by comparing and analyzing numerical analysis results and laboratory model test results. Also, load bearing ratio of a raft is analyzed by performing sensitivity analysis of foundation parameters with the actual field conditions. As a result of this study, correlation between bearing capacity and vertical displacement of numerical results turned out to be similar with that of a laboratory model test. In addition, ultimate bearing capacity of piled rafts and load bearing ratio of the raft is calculated to be similar in both cases. The load bearing ratio of the raft was also estimated to be in the range of 33% to 52% from the sensitivity analysis. The results were confirmed to be similar to the previous studies. Therefore, it can be inferred that piled rafts can be effectively modelled applying axisymmetry condition and interface element.

Skin Friction Properties of SIP Pile through Direct Shear Test (직접전단 시험에 의한 SIP 말뚝의 주면마찰 특성 고찰)

  • 천병식;임해식;김도형
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.558-561
    • /
    • 2001
  • SIP(Soil cement Injected Precast pile) that inserts a precast pile after injecting a cement paste into a boring has been applied rapidly through the change of construction circumstances. But there isnt any logical equation of a bearing capacity fitted to SIP yet. So Meyerhof equation has mainly been used to predict a bearing capacity in a design stage instead. But it has shortcomings such as lack of confidence because it has derived not from a theory but from an experience obtained from the result of SPT (Standard Penetration Test) and because a penetration depth tends to be deeper by an excessive design that depends on an end bearing capacity of a pile more than a skin frictional resistance. In this study, thereupon, a direct shear test in the laboratory was performed to both SM and SC soils in variable conditions to verify skin friction properties for the purpose of presenting some reasons capable of reducing penetration depths. Through the tests, soil to soil of SM in cohesion, rough panel to soil of SM in friction angle and soil to soil of SM in shear strength tended to be high. And a shear strength increased as its total unit weight increased in all cases.

  • PDF