• Title/Summary/Keyword: End plate

Search Result 646, Processing Time 0.026 seconds

Evaluation of the Energy Dissipation Capacity of an Unstiffened Extended End-plate Connection (비보강 확장단부판 접합부의 에너지소산능력 평가)

  • Lee, Soo Kueon;Yang, Jae Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2015
  • An extended end-plate connection displays different behavioral properties and energy dissipation capacity based on the thickness and length of the end-plate comprising the connection in the form of a beam-to-column moment connection, the number and diameter of the high strength bolt, the gauge distance of the high strength bolt, and the size and length of the welds. Such extended end-plate is applied to beam-to-column connections in various geometric forms in the US and European regions. Currently in Korea, however, the extended end-plate beam-to-column connection is not actively applied due to the lack of proper design formulas, the evaluation of the energy dissipation capacity, and the provision of construction guidelines. Accordingly, this study was conducted to provide the basic data for the proposal of a prediction model of energy dissipation capacity by evaluating the energy dissipation capacity of unstiffened extended end-plate connections with relatively thin end plate thicknesses. To achieve this, a three-dimensional nonlinear finite element analysis has been conducted on unstiffened extended end-plate connections, with the thickness of the end plate as the set variable.

Ski-end shape control based on the model in heavy plate mill (후판 압연공정에서의 판 선단부 형상제어 연구)

  • Chun, M.S.;Park, H.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.93-95
    • /
    • 2007
  • Studies on ski-end shape control at the top end of rolling plate in heavy thick plate mill by using FEM analysis and measuring system have been performed. Plate shape behaviour at the top-end on rolling by the two different methods in finishing rolling process has been observed. One is to minimize the height of ski-end by using pass line based on the relational model between shape factor and pick-up and the other one is to prevent turn down problem caused by the impact between table roller and down bended plate on rolling by using roll speed difference. To minimize the height of ski-end, the prediction models based on the FEM analysis and measuring data was developed. The control method of ski - end shape on finishing rolling process was applied in actual mill and the height of ski-end was reduced by about 50% compared with conventional operation.

  • PDF

Aerodynamic Characteristics of Impulse Turbine with an End Plate for Wave Energy Conversion

  • HYUN BEOM SOO;MOON JAE SEUNG;HONG SEOK WON;KIM KI SUP
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.1-7
    • /
    • 2005
  • This paper deals with the design and aerodynamic analysis of a special-type impulse turbine, with an end plate for wave energy conversion. Numerical analysis was performed using a CFD code, FLUENT. The main idea of the proposed end plate was to minimize the adverse effect of tip clearance of turbine blade, and was borrowed from ducted propeller, with so-called penetrating end plate for special purpose marine vehicles. Results show that efficiency increases up to $5\%$, depending on the flow coefficient; a higher flow coefficient yields increased efficiency. Decrease of input coefficient CAwith an end plate is the main reason for higher efficiency. Performance of end plate at various design parameters, as well as flow conditions, was investigated; the advantages and disadvantages of the presentimpulse turbine were also discussed.

Effect of bolt preloading on rotational stiffness of stainless steel end-plate connections

  • Yuchen Song;Brian Uy
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.547-564
    • /
    • 2023
  • This study investigates the effect of bolt preloading on the rotational stiffness of stainless steel end-plate connections. An experimental programme incorporating 11 full-scale joint specimens are carried out comparing the behaviours of fully pre-tensioned (PT) and snug-tightened (ST) flush/extended end-plate connections, made of austenitic or lean duplex stainless steels. It is observed from the tests that the presence of bolt preloading leads to a significant increase in the rotational stiffness. A parallel finite element analysis (FEA) validated against the test results demonstrates that the geometric imperfection of end-plate has a strong influence on the moment-rotation response of preloaded end-plate connections, which is crucial to explain the observed "two-stage" behaviour of these connections. Based on the data obtained from the tests and FE parametric study, the performance of the Eurocode 3 predictive model is evaluated, which exhibits a significant deviation in predicting the rotational stiffness of stainless steel end-plate connections. A modified bi-linear model, which incorporates three key properties, is therefore proposed to enable a better prediction. Finally, the effect of bolt preloading is demonstrated at the system (structure) level considering the serviceability of semi-continuous stainless steel beams with end-plate connections.

Open End Correction for the Reflection and Discharge of Weak Shock Wave (약한 충격파의 반사와 방출에 관한 개구단 보정)

  • Lee, D.H.;Kim, H.D.;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.349-354
    • /
    • 2001
  • The present study addresses the open end correction associated with the reflection and discharge phenomena of a weak shock wave from an open end of a duct. The open end correction of the weak shock wave is investigated experimentally and by numerical computation. An experiment is made using a simple shock tube with an open end, and computation is performed to simulate the experimental flow field using the unsteady, axisymmetric, compressible, flow governing equations. The results obtained show that an open end correction should be involved for shock wave discharge and reflection problems generated from the exit of the duct with an open end baffle plate. With a baffle plate less than three times the duct diameter, it is found that the open end correction is a function of both the diameter of the baffle plate and normal shock wave magnitude. However, for a baffle plate larger than three times the duct diameter, it is independent of the baffle plate diameter. The present computations predict the results of shock tube experiment with good accuracy. A new empirical equation for prediction of the open end correction is found for the weak shock reflection and discharge phenomena occurring at the open end of the duct with and without a baffle plate.

  • PDF

A Scale-Effect of O-Cell Pile Load Test with Variable End Plate (가변선단재하판을 이용한 양방향말뚝재하시험의 치수 효과)

  • Joo, Yong-Sun;Kim, Nak-Kyung;Kim, Ung-Jin;Park, Jong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.884-890
    • /
    • 2009
  • The bi-directional pile load test with variable end plate overcomes the shortcoming of the Osterberg cell test. It is possible that the ultimate bearing capacity of the bi-direction can be known by using the loading of the end plate and two step procedures. The first step is to confirming end bearing capacity with variable end plate and the second step is similar to the conventional O-cell test. In the study, To calculate ultimate capacity of bi-directional load test using model with the pile with variable end plate O-cell, operated with end plate of 3 type on sand layer according to the relative density, loose, medium and dense conditions.

  • PDF

Experimental study on standard and innovative bolted end-plate beam-to-beam joints under bending

  • Katula, Levente;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1423-1450
    • /
    • 2015
  • The paper presents the details and results of an experimental study on bolted end-plate joints of industrial type steel building frames. The investigated joints are commonly used in Lindab-Astron industrial buildings and are optimized for manufacturing, erection and durability. The aim of the research was to provide an experimental background for the design model development by studying load-bearing capacity of joints, bolt force distribution, and end-plate deformations. Because of the special joint details, (i.e., joints with four bolts in one bolt-row and HammerHead arrangements), the Eurocode 3 standardized component model had to be improved and extended. The experimental programme included six different end-plate and bolt arrangements and covered sixteen specimens. The steel grade of test specimens was S355, the bolt diameter M20, whereas the bolt grade was 8.8 and 10.9 for the two series. The end-plate thickness varied between 12 mm and 24 mm. The specimens were investigated under pure bending conditions using a four-point-bending test arrangement. In all tests the typical displacements and the bolt force distribution were measured. The end-plate plastic deformations were measured after the tests by an automatic measuring device. The measured data were presented and evaluated by the moment-bolt-row force and moment-distance from centre of compression diagrams and by the deformed end-plate surfaces. From the results the typical failure modes and the joint behaviour were specified and presented. Furthermore the influence of the end-plate thickness and the pretension of the bolts on the behaviour of bolted joints were analysed.

Effects of Corner Radius on the Stress Strength Safety of LPG Steel Cylinder (LPG 강재용기의 응력강도 안전성에 미치는 코너반경의 영향)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • This paper presents the stress strength safety of LPG steel cylinder for various corner radiuses of upper round end plate and lower round end plate by using a finite element method. The FEM analyzed results indicate that the most influential elements is a corner radius of upper round end plate and lower round end plate rather than a thickness of LPG cylinder. But, the thickness of a steel cylinder is an important design element considering for a weight reduction of a cylinder. Thus, this paper recommends that the LPG steel cylinder thickness is 2.3~2.6mm and the corner radius of upper round end plate and lower round end plate is over 157mm as an optimum design for the maximum testing pressure of 3.04MPa.

Structural performance evaluation of bolted end-plate connections in a half-through railway inclined girder

  • Jung Hyun Kim;Chang Su Shim
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.473-486
    • /
    • 2023
  • A through-railway bridge with an inclined girder has recently been applied to optimize the cross-section of a slender bridge structure in railway bridges. To achieve the additional cross-section optimization effect by the bolted end-plate connection, it is necessary to investigate the application of the bolted end-plate tension connection between the inclined girder and the crossbeam. This basic study was conducted on the application of the bolted end-plate moment connection of crossbeams to half-through girders with inclined webs. The combined behavior of vertical deflection and rotational behavior was observed due to the effect of the web inclination in the inclined girder where the steel crossbeam was connected to the girder by the bolted end-plate moment connection. Therefore, in the experiment, the deflection of the inclined girder was 1.77-2.93 times greater than that of the vertical girder but the lateral deflection of the inclined girder was 0.4 times less than that of the vertical girder. Moreover, the tensile stress of the upper bolts in the inclined girder with low crossbeams was clearly 0.81 times lower than that of the vertical girder. According to the results, the design formula for vertical girders does not reflect the influence of the web inclination. Therefore, this study proposed the design procedures for the inclined girder to apply the bolted end-plate moment connection of the crossbeam to the inclined girder by reflecting the design change factors according to the effect of the web inclination.

Development of Repair Materials and Rehabilitation Techniques (보수.보강재료 및 공법개발연구)

  • 송병표;한만엽;황의승;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.592-597
    • /
    • 1997
  • Many strengthening methods are introduced and used to rehabilitate existing structures. However, both theoretical background and application techniques are not. One of the most popular methods is bonded plate method using either steel plate or carbon plate. For bonded plate method, bonding at the end of the plate is the most important properties. In this study, a method to reduce the stress distribution at the end of the bonded plate is found and tested. The results showed that the proposed end anchoring method is effective.

  • PDF