• 제목/요약/키워드: End Anchorage

검색결과 91건 처리시간 0.026초

Improvement of the behaviour of composite slabs: A new type of end anchorage

  • Fonseca, Alexandre;Marques, Bruno;Simoes, Rui
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1381-1402
    • /
    • 2015
  • The application of composite steel-concrete slabs with profiled steel sheeting has increased, due to the various advantages in relation to reinforced concrete slabs such as, the reduced thickness, the reduced amount of lost formwork needed, as well as the speed of execution. The loss of longitudinal shear resistance is, generally, the governing design mode for simply supported spans of common lengths. For common distributed loadings, the composite behaviour is influenced by the partial shear connection between the concrete and the steel sheeting. The present research work is intended to contribute to improving the ultimate limit state behaviour of composite slabs using end anchorage. Eurocode 4, Part 1.1 (EN 1994-1-1) provides an analytical methodology for predicting the increase of longitudinal resistance, achieved by using shear studs welded through the steel sheeting as the end anchorage mechanism. The code does not supply an analytical methodology for other kinds of end anchorage so, additional tests or studies are needed to prove the effectiveness of these types of anchorage. The influence of end anchorage mechanisms provided by transverse rebars at the ends of simply supported composite slabs is analysed in this paper. Two experimental programmes were carried out, the first to determine the resistance provided by the new end anchorage mechanism and the second to analyse its influence on the behaviour of simply supported composite slabs.

Eliminating concrete cover separation of NSM strengthened beams by CFRP end anchorage

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful;Kamruzzaman, Mohamed;Huda, Md. Nazmul;Soeb, Mahmudur Rahman
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.899-916
    • /
    • 2015
  • Upgrading or strengthening of existing reinforced concrete (RC) infrastructure is an emerging demand nowadays. Near Surface Mounted (NSM) technique is very promising approach for flexural strengthening of RC members. However, premature failure such as concrete cover separation failure have been a main concern in utilizing this technique. In this study, U-wrap end anchorage with carbon fiber reinforced polymer (CFRP) fabrics is proposed to eliminate the concrete cover separation failure. Experimental programs were conducted to the consequence of U-wrap end anchorage on the flexurally strengthened RC beams with NSM-steel. A total of eight RC rectangular beam specimens were tested. One specimen was kept unstrengthened as a reference; three specimens were strengthened with NSM-steel bars and the remaining four specimens were strengthened with NSM-steel bars and U-wrap end anchorage using CFRP fabrics. A 3D non-linear finite element model (FEM) was developed to simulate the flexural response of the tested specimens. It is revealed that NSM-steel (with and without end-anchors) significantly improved the flexural strength; moreover decreased deflection and strains compared with reference specimen. Furthermore, NSM-steel with end anchorage strengthened specimens revealed the greater flexural strength and improve failure modes (premature to flexure) compared with the NSM-steel without end anchorage specimens. The results also ensured that the U-wrap end anchorage completely eliminate the concrete cover separation failure.

슬래브교 외부 강선 보강용 정착구 개발 (Development of the Braket for External Prestressing Method in Slab Bridge)

  • 한만엽;이상열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.93-98
    • /
    • 2001
  • This study is to develop the end anchorage of external steel reinforcement of RC slab bridges. External prestress method using the existing steel is that When the anchorage is installed in slab end, a plenty of anchor bolts were required because the only tangential stress of anchor bolt received a tendon force. Then, for this reason, the wide end anchorage was required and the shape was complicate. But this reinforcement method using method that inserts anchor key at concrete surface cut a groove gets big internal force comparing to the anchorage using existing anchor bolt. Furthermore, the number of anchor bolt for installing apparently will be reduced, and the operation will be convenient because a small anchorage of a simple shape will be received a great tendon force

  • PDF

콘크리트 교량의 외부강선 보강을 위한 앵커키 정착장치의 개발 연구 (Development of the Bracket for External Prestressing Method for Slab Bridge)

  • 한만엽;이상열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1009-1014
    • /
    • 2001
  • This study is to develop the end anchorage of external steel reinforcement of RC slab bridges. External prestress method using the existing steel is that When the anchorage is installed in slab end, a plenty of anchor bolts were required because the only tangential stress of anchor bolt received a tendon force. Then, for this reason, the wide end anchorage was required and the shape was complicate. But this reinforcement method using method that inserts anchor key at concrete surface cut a groove gets big internal force comparing to the anchorage using existing anchor bolt. Furthermore, the number of anchor bolt for installing apparently will be reduced, and the operation will be convenient because a small anchorage of a simple shape will be received a great tendon force.

  • PDF

탄소섬유시트로 보강한 RC보의 단부 정착유무에 따른 휨성능 평가 (Evaluation of Flexural Performance of Reinforced Concrete Beams Strengthened by Carbon Fiber Sheet Considering End Anchorage Effect)

  • 이창현;어석홍
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1165-1171
    • /
    • 2022
  • In this paper, the results of an experimental study were presented by measuring and comparing the flexural strength and deformation on the carbon fiber sheet strength reinforced concrete beam considering end anchorage effect. For this purpose, total six specimens of 100×100×600mm size were prepared and tested according to the KDS 14 20 20. The specimens were categorized in three cases as reference beams without strengthening, beams carbon fiber strengthened but not anchored and beams carbon fiber strengthened also anchored. Experimental results showed that the end anchorage contributed to increase the flexural strength about 42% greater than that of carbon fiber sheets alone, and the number and width of cracks were relatively increased. The results support a considerable effects of end anchorage for carbon fiber strengthened reinforced concrete beams in enhancing the flexural performance. Further studies are needed in durability and long term behavior of carbon fiber sheet strengthened reinforced concrete beams.

이질구조부 보주근 정착방법에 따른 혼합구조보의 구조적 특성에 관한 연구 (A Study on the Structural Properties of Composite Beam with Attaching Method of Main Bar of Different Types of Structure.)

  • 김상헌;임병호;이승조;박정민;김화중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.121-126
    • /
    • 2000
  • The attaching method of different types of structure and explanation of stress transfer mechanism are at important issue as beam having definitive factor such as the anchorage of RC main bar, the stress transfer of anchorage-end S member, RC member-anchorage, anchorage-end S member in the composite beam of S and RC member. In this study, the structural properties of composite beam according to attaching method of main bar about end RC-middle S beam were investigated in order to use them as fundamental data for the development of composite structure member. Throughout a series of study, it was shown that the proof stress of main bar - flange welding specimen is the highest and there is no difference between the deformation-properties according to attaching method of main bar.

  • PDF

Analysis of stress distribution in anchorage zones of pretensioned beams

  • Gens, F.;Dotreppe, J.C.
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.249-260
    • /
    • 2004
  • The stress transmission mechanism in pretensioned concrete beams, though very interesting from an economical point of view, is very complex, integrating various phenomenons such as sliding, bond, bursting. For long the complexity of this mechanism has led engineers to provide a massive rectangular anchorage zone at each end of the beam. The necessity of using such a concrete reinforcement is certainly unquestionable in post-tensioned beams. However in pretensioned elements the stresses induced in concrete in the anchorage zone are smaller than in post-tensioned elements. In this article the stress field in the end zone is calculated numerically and from this analysis the possible reduction of the cross-section of the anchorage block is examined.

Design equation to evaluate bursting forces at the end zone of post-tensioned members

  • Kim, Joung Rae;Kwak, Hyo-Gyoung;Kim, Byung-Suk
    • Computers and Concrete
    • /
    • 제24권5호
    • /
    • pp.423-436
    • /
    • 2019
  • Design equations to evaluate the bursting force in a post-tensioned anchorage zone have been introduced in many design codes, and one equation in AASHTO LRFD is widely used. However, this equation may not determine the bursting force exactly because it was designed on the basis of two-dimensional numerical analyses without considering various design parameters such as the duct hole and shape of the bearing plate. To improve the design equation, modification of the AASHTO LRFD design equation was considered. The behavior of the anchorage zone was investigated using three-dimensional linear elastic finite element analysis with design parameters such as bearing plate size and diameter of sheath hole. Upon the suggestion of a modified design equation for evaluating the bursting force in an anchorage block with a rectangular anchorage plate (Kim and Kwak 2018), additional influences of design parameters that could affect the evaluation of bursting force were investigated. An improved equation was introduced for determining the bursting force in an anchorage block with a circular anchorage plate, using the same procedure introduced in the design equation for an anchorage block with a rectangular anchorage plate. The validity of the introduced design equation was confirmed by comparison with AASHTO LRFD.

클립형 연결장치로 결속된 90도 갈고리를 갖는 띠철근의 정착거동 (Clip-type Binding Implement Effect on Anchorage Behavior of 90-Degree End-Hooked Transverse Reinforcement in Reinforced Concrete Columns)

  • 박경언;윤현도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권4호
    • /
    • pp.72-80
    • /
    • 2020
  • 이 연구의 목적은 철근콘크리트 기둥에서 외부띠철근 상세로 이용되는 갈고리 양단 135도 교차 시공 상세에 대해, 대등한 구조적 성능을 확보하면서, 동시에 시공성을 개선할 목적으로 클립형 연결장치로 띠철근 갈고리 보강하는 방법을 제시하였다. 제안한 클립형 연결장치로 결속한 띠철근의 정착거동 및 강도를 파악하기 위해 콘크리트 압축강도, 클립형 연결장치의 묻힘길이, 설치 위치를 주요 변수로 28개 인발 실험체를 제작하여 실험하였다. 실험결과, 정착강도는 콘크리트 압축강도, 띠철근 직경, 클립의 묻힘길이, 설치 위치에 관계없이 클립형 연결장치로 결속하는 경우, 표준 갈고리 상세보다 모두 높게 나타났고 표준 갈고리 상세의 정착거동과 유사한 거동을 보여주었다. 그러므로, 90도 갈고리에 클립형 연결장치로 결속하는 상세는 표준 갈고리 상세와 대등한 정착거동 및 성능을 발휘할 수 있는 것으로 평가할 수 있다.

Miniscrew를 고정원으로 이용한 교정치료 (The use of miniscrew as an anchorage for the orthodontic tooth movement)

  • 경승현;임중기;박영철
    • 대한치과교정학회지
    • /
    • 제31권4호
    • /
    • pp.415-424
    • /
    • 2001
  • 교정치료에 있어서 anchorage는 진단 및 치료계획에서부터 치료 종료 단계까지 교정의사가 항상 염두에 두면서 치료를 진행 해야 하는 중요한 요소이다. 환자의 적극적인 협조를 필요로 하는 전통적인 anchorage 조절법 보다는 miniscrew 같은 skeletal anchorage 가 좀더 효과적인 방법으로 제시되어 지고 있어, miniscrew의 교정적 이용 시 고려사항에 대하여 전반적인 고찰과 증례보고를 통해서 niniscrew의 다양한 임상적 적용에 대해서 살펴보았다. 또한 midpalate부위가 miniscrew의 식립 부위로서 가지는 장점과 식립 시의 주의사항을 알아보았으며 skeletal anchorage 가 교정에 도입되면서 치료개념과 방법에 있어서의 변화를 요약하면 다음과 같다. 1. 절대적인 개념의 Anchorage가 도입 되었다. 2. 생역학적 면에서 치아의 치체이동이 쉬워지고 determinate system이 설계되어 질수 있다. 3. 기존의 수술로만 가능했던 치료들 중 일부는 교정 치료만으로 치료가 가능하게 되었다.

  • PDF