• Title/Summary/Keyword: Encoder error compensation

Search Result 26, Processing Time 0.022 seconds

Performance Improvement Using Mean Compensation of Quantization Noise in Low Bit-rate Video Encoder (저 전송률 통영상에서 양자화 잡음의 평균값 보상을 사용한 부호화기의 성능 개선)

  • 신정환;백성학;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2085-2091
    • /
    • 2001
  • In lossy compression method, the transformed coefficients are quantized. This results in the quantization noise. The video image quality and bit rate is closely related with the quantization step. In this paper, we proposed a new quantization function for the improved performance. The DC value of each macroblock is compensated depending on the magnitude of DC quantization error. It is implemented very low bit-rate video coding, i.e., H.26L. The experimental result is useful when the object motion is not severe.

  • PDF

The Control of Switched Reluctance Motors Using Binary Observer without Speed and Position Sensors (이원 관측기를 이용한 SRM의 속도 및 위치 센서없는 제어)

  • Sin, Jae-Hwa;Yang, Lee-U;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.457-466
    • /
    • 2002
  • The speed and position control of SRM(Switched Reluctance Motor) needs the encoder or resolver to obtain the rotor position information. These position sensors can be affected by the EMI, dusty, and high temperature surroundings. Therefore the speed and position sensorless control has been studied widely In this paper, the binary observer of the SRM which has two feedback compensation loops to control the speed of SRM is proposed. One loop reduces the estimation error like the sliding mode observer, and the other removes the estimation error chattering occurred in the sliding mode observer. This observer is constructed on the basis of variable structure control theory and has the inertial term to exclude the chattering. This method has a good estimation performance in spite of nonlinear modeling of SRM. The advantages of the proposed method are verified experimentally.

IMPROVEMENT OF I-PICTURE CODING USING INTER-PICTURE PROCESSING

  • Arizumi, Masao;Sagara, Naoya;Sugiyama, Kenji
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.618-622
    • /
    • 2009
  • An improvement of standard encoder has been saturated recently. However, new coding method does not have a compatibility with conventional standard. To solve this problem, new concept coding method that has a semicompatibility with standard may be discussed. On the other hand, cyclic Intra-picture coding is used for access and refreshment. However, I-picture spend large amount of bits. An enhancement of I-picture is desired with keeping its refreshment performance. Further, it's a problem that quality change at the border of GOP because of its independency. To respond these, we propose the coding which is applied an inter-frame processing at the border of GOP. Applied method is the reduction of quantization error using the motion compensated inter-picture processing. In this report, we check the improvement of the efficiency and the compatibility of proposed method. As a result of examination, we recognize that the total gain is maximally 1.2dB in PSNR. Generally, the degradation of performance in standard decoding is smaller than its gain. Also the refreshment performance is tested.

  • PDF

Supervised-learning-based algorithm for color image compression

  • Liu, Xue-Dong;Wang, Meng-Yue;Sa, Ji-Ming
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.258-271
    • /
    • 2020
  • A correlation exists between luminance samples and chrominance samples of a color image. It is beneficial to exploit such interchannel redundancy for color image compression. We propose an algorithm that predicts chrominance components Cb and Cr from the luminance component Y. The prediction model is trained by supervised learning with Laplacian-regularized least squares to minimize the total prediction error. Kernel principal component analysis mapping, which reduces computational complexity, is implemented on the same point set at both the encoder and decoder to ensure that predictions are identical at both the ends without signaling extra location information. In addition, chrominance subsampling and entropy coding for model parameters are adopted to further reduce the bit rate. Finally, luminance information and model parameters are stored for image reconstruction. Experimental results show the performance superiority of the proposed algorithm over its predecessor and JPEG, and even over JPEG-XR. The compensation version with the chrominance difference of the proposed algorithm performs close to and even better than JPEG2000 in some cases.

Efficient DCT Domain Transcoding for Video Transmission (영상 전송을 위한 효율적인 DCT 영역의 트랜스코딩)

  • Kim, Sung-Jin;Hwang, In-Kyung;Joung, Woong-Chan;Paik, Joon-Ki;Kim, Je-Woo;Song, Hyok;Paik, Jong-Ho
    • Journal of Broadcast Engineering
    • /
    • v.6 no.2
    • /
    • pp.121-130
    • /
    • 2001
  • We propose an efficient DCT-domain video transcoding algorithm for flexible for bit-rate video communications. Video transcoding provides communication fiexibility by adaptively changing the bit-rate of compressed bit stream. During the transcoding process, adrift error is unavoidable because of the difference between reference images in the series of encoding and decoding. For solving the drift error problem, cascade pixel-domain transcoder (CPDT) has been proposed. CPDT, however, requires highly complex hardware and heavy computational overhead. In this paper we propose a DCT-domain transcoding technique, which enables efficient transcoding without any drift error. The proposed cascade DCT-domain transcoder (CDDT) is realized by new motion compensation and down-sampling methods in the DCT-domain.

  • PDF

Study on the Linear Air Bearing Stage with Actively Controllable Magnetic Preload (초정밀 스테이지를 위한 능동형 자기예압 공기베어링에 관한 연구)

  • Ro S.K.;Park C.H.;Kim S.H.;Kwak Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.135-136
    • /
    • 2006
  • A precise linear motion stage supported by magnetically preloaded air bearings is introduced where preloading magnetic actuators are combined with permanent magnets and coils to adjust air bearing clearance by controlling magnetic force actively. Each of the magnetic actuators has a permanent magnet generating nominal magnetic flux for required preload and a coil to perturb the magnetic force resulting adjustment of air-bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate nominal preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder is built for verifying this design concept. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed, and the result shows very good linearity.

  • PDF