• Title/Summary/Keyword: Encoder Model

Search Result 354, Processing Time 0.022 seconds

Double Encoder-Decoder Model for Improving the Accuracy of the Electricity Consumption Prediction in Manufacturing (제조업 전력량 예측 정확성 향상을 위한 Double Encoder-Decoder 모델)

  • Cho, Yeongchang;Go, Byung Gill;Sung, Jong Hoon;Cho, Yeong Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.419-430
    • /
    • 2020
  • This paper investigated methods to improve the forecasting accuracy of the electricity consumption prediction model. Currently, the demand for electricity has continuously been rising more than ever. Since the industrial sector uses more electricity than any other sectors, the importance of a more precise forecasting model for manufacturing sites has been highlighted to lower the excess energy production. We propose a double encoder-decoder model, which uses two separate encoders and one decoder, in order to adapt both long-term and short-term data for better forecasts. We evaluated our proposed model on our electricity power consumption dataset, which was collected in a manufacturing site of Sehong from January 1st, 2019 to June 30th, 2019 with 1 minute time interval. From the experiment, the double encoder-decoder model marked about 10% reduction in mean absolute error percentage compared to a conventional encoder-decoder model. This result indicates that the proposed model forecasts electricity consumption more accurately on manufacturing sites compared to an encoder-decoder model.

Adaptive Importance Channel Selection for Perceptual Image Compression

  • He, Yifan;Li, Feng;Bai, Huihui;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3823-3840
    • /
    • 2020
  • Recently, auto-encoder has emerged as the most popular method in convolutional neural network (CNN) based image compression and has achieved impressive performance. In the traditional auto-encoder based image compression model, the encoder simply sends the features of last layer to the decoder, which cannot allocate bits over different spatial regions in an efficient way. Besides, these methods do not fully exploit the contextual information under different receptive fields for better reconstruction performance. In this paper, to solve these issues, a novel auto-encoder model is designed for image compression, which can effectively transmit the hierarchical features of the encoder to the decoder. Specifically, we first propose an adaptive bit-allocation strategy, which can adaptively select an importance channel. Then, we conduct the multiply operation on the generated importance mask and the features of the last layer in our proposed encoder to achieve efficient bit allocation. Moreover, we present an additional novel perceptual loss function for more accurate image details. Extensive experiments demonstrated that the proposed model can achieve significant superiority compared with JPEG and JPEG2000 both in both subjective and objective quality. Besides, our model shows better performance than the state-of-the-art convolutional neural network (CNN)-based image compression methods in terms of PSNR.

Design and Construction of a Surface Encoder with Dual Sine-Grids

  • Kimura, Akihide;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • This paper describes a second-generation dual sine-grid surface encoder for 2-D position measurements. The surface encoder consisted of a 2-D grid with a 2-D sinusoidal pattern on its surface, and a 2-D angle sensor that detected the 2-D profile of the surface grid The 2-D angle sensor design of previously developed first-generation surface encoders was based on geometric optics. To improve the resolution of the surface encoder, we fabricated a 2-D sine-grid with a pitch of $10{\mu}m$. We also established a new optical model for the second-generation surface encoder that utilizes diffraction and interference to generate its measured values. The 2-D sine-grid was fabricated on a workpiece by an ultra precision lathe with the assistance of a fast tool servo. We then performed a UV-casting process to imprint the sine-grid on a transparent plastic film and constructed an experimental setup to realize the second-generation surface encoder. We conducted tests that demonstrated the feasibility of the proposed surface encoder model.

A Study on Classification of Variant Malware Family Based on ResNet-Variational AutoEncoder (ResNet-Variational AutoEncoder기반 변종 악성코드 패밀리 분류 연구)

  • Lee, Young-jeon;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Traditionally, most malicious codes have been analyzed using feature information extracted by domain experts. However, this feature-based analysis method depends on the analyst's capabilities and has limitations in detecting variant malicious codes that have modified existing malicious codes. In this study, we propose a ResNet-Variational AutoEncder-based variant malware classification method that can classify a family of variant malware without domain expert intervention. The Variational AutoEncoder network has the characteristics of creating new data within a normal distribution and understanding the characteristics of the data well in the learning process of training data provided as input values. In this study, important features of malicious code could be extracted by extracting latent variables in the learning process of Variational AutoEncoder. In addition, transfer learning was performed to better learn the characteristics of the training data and increase the efficiency of learning. The learning parameters of the ResNet-152 model pre-trained with the ImageNet Dataset were transferred to the learning parameters of the Encoder Network. The ResNet-Variational AutoEncoder that performed transfer learning showed higher performance than the existing Variational AutoEncoder and provided learning efficiency. Meanwhile, an ensemble model, Stacking Classifier, was used as a method for classifying variant malicious codes. As a result of learning the Stacking Classifier based on the characteristic data of the variant malware extracted by the Encoder Network of the ResNet-VAE model, an accuracy of 98.66% and an F1-Score of 98.68 were obtained.

Neural Networks Based Modeling with Adaptive Selection of Hidden Layer's Node for Path Loss Model

  • Kang, Chang Ho;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.193-200
    • /
    • 2019
  • The auto-encoder network which is a good candidate to handle the modeling of the signal strength attenuation is designed for denoising and compensating the distortion of the received data. It provides a non-linear mapping function by iteratively learning the encoder and the decoder. The encoder is the non-linear mapping function, and the decoder demands accurate data reconstruction from the representation generated by the encoder. In addition, the adaptive network width which supports the automatic generation of new hidden nodes and pruning of inconsequential nodes is also implemented in the proposed algorithm for increasing the efficiency of the algorithm. Simulation results show that the proposed method can improve the neural network training surface to achieve the highest possible accuracy of the signal modeling compared with the conventional modeling method.

Development of an MPEG-4 AAC encoder of low implementation complexity (낮은 연산 부담을 갖는 MPEG-4 AAC 인코더 개발에 관한 연구)

  • 김병일;김동환;장태규;장흥엽
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2467-2470
    • /
    • 2003
  • This paper presents a new structure of MPEG-4 AAC encoder. The proposed encoder directly shapes quantization noise distribution according to the energy distribution curve and thereafter performs adjustment of the offset level of the noise distribution to meet the given bit rate. The direct noise shaping and the bit rate matching scheme of the proposed encoder algorithm significantly alleviate the problem of conventional encoder's processing burden related with the employment of the precise psychoacoustic model and iteration intensive quantizer. The encoder algorithm is implemented on ARM processor with fixed-feint arithmetic operations. The audio quality of the implemented system is observed comparable to those of commercially available encoders, white the complexity of the implementation is drastically reduced in comparison to the conventional encoder systems.

  • PDF

Design of XML Using UML in EtherCAT-based Encoder System (EtherCAT 기반 엔코더 시스템에서 UML을 이용한 XML 설계)

  • Lee, Ju-Kyoung;Lee, Suk;Lee, Kyung-Chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.117-125
    • /
    • 2014
  • The EtherCAT protocol has become a very promising alternative for real-time industrial application due to its ability to eliminate uncertainties in the Ethernet. However, the extended markup language (XML) for the EtherCAT network system, which is required in the design, lacks systematic development to take advantage of model transformation techniques. This paper focuses on the system development procedure of the EtherCAT-based encoder system using the CANopen over EtherCAT (CoE) protocol. UML modeling is being adapted to design for XML of EtherCAT-based encoder system. To this purpose, this paper analyzes the object dictionary (OD) of a commercial encoder and CANopen over EtherCAT. A UML diagram is then designed based on the analysis, and XML is generated through the designed UML diagram. Finally, an experimental test_bed for the EtherCAT-based encoder system is implemented and its performance is compared with a commercial encoder.

Application of Improved Variational Recurrent Auto-Encoder for Korean Sentence Generation (한국어 문장 생성을 위한 Variational Recurrent Auto-Encoder 개선 및 활용)

  • Hahn, Sangchul;Hong, Seokjin;Choi, Heeyoul
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.157-164
    • /
    • 2018
  • Due to the revolutionary advances in deep learning, performance of pattern recognition has increased significantly in many applications like speech recognition and image recognition, and some systems outperform human-level intelligence in specific domains. Unlike pattern recognition, in this paper, we focus on generating Korean sentences based on a few Korean sentences. We apply variational recurrent auto-encoder (VRAE) and modify the model considering some characteristics of Korean sentences. To reduce the number of words in the model, we apply a word spacing model. Also, there are many Korean sentences which have the same meaning but different word order, even without subjects or objects; therefore we change the unidirectional encoder of VRAE into a bidirectional encoder. In addition, we apply an interpolation method on the encoded vectors from the given sentences, so that we can generate new sentences which are similar to the given sentences. In experiments, we confirm that our proposed method generates better sentences which are semantically more similar to the given sentences.

Learning-based Inertial-wheel Odometry for a Mobile Robot (모바일 로봇을 위한 학습 기반 관성-바퀴 오도메트리)

  • Myeongsoo Kim;Keunwoo Jang;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.427-435
    • /
    • 2023
  • This paper proposes a method of estimating the pose of a mobile robot by using a learning model. When estimating the pose of a mobile robot, wheel encoder and inertial measurement unit (IMU) data are generally utilized. However, depending on the condition of the ground surface, slip occurs due to interaction between the wheel and the floor. In this case, it is hard to predict pose accurately by using only encoder and IMU. Thus, in order to reduce pose error even in such conditions, this paper introduces a pose estimation method based on a learning model using data of the wheel encoder and IMU. As the learning model, long short-term memory (LSTM) network is adopted. The inputs to LSTM are velocity and acceleration data from the wheel encoder and IMU. Outputs from network are corrected linear and angular velocity. Estimated pose is calculated through numerically integrating output velocities. Dataset used as ground truth of learning model is collected in various ground conditions. Experimental results demonstrate that proposed learning model has higher accuracy of pose estimation than extended Kalman filter (EKF) and other learning models using the same data under various ground conditions.

3D Object Generation and Renderer System based on VAE ResNet-GAN

  • Min-Su Yu;Tae-Won Jung;GyoungHyun Kim;Soonchul Kwon;Kye-Dong Jung
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.142-146
    • /
    • 2023
  • We present a method for generating 3D structures and rendering objects by combining VAE (Variational Autoencoder) and GAN (Generative Adversarial Network). This approach focuses on generating and rendering 3D models with improved quality using residual learning as the learning method for the encoder. We deep stack the encoder layers to accurately reflect the features of the image and apply residual blocks to solve the problems of deep layers to improve the encoder performance. This solves the problems of gradient vanishing and exploding, which are problems when constructing a deep neural network, and creates a 3D model of improved quality. To accurately extract image features, we construct deep layers of the encoder model and apply the residual function to learning to model with more detailed information. The generated model has more detailed voxels for more accurate representation, is rendered by adding materials and lighting, and is finally converted into a mesh model. 3D models have excellent visual quality and accuracy, making them useful in various fields such as virtual reality, game development, and metaverse.