본 논문은 지능형 비디오 감시 시스템의 설계 및 구현에 대하여 기술한다. 지능형 비디오 감시 시스템은 기존 CCTV를 활용한 비디오 감시 시스템에 비해 운영의 효율성이 뛰어나며 야간, 날씨 등의 운영환경에 무관하게 동작하는 장점을 가지고 있다. 시스템의 하드웨어는 디지털 미디어 프로세서와 비디오 인코더, 비디오 디코더 칩을 기반으로 설계하고 구현하였으며, 소프트웨어는 적외선 영상의 온도분포를 분석하고 화재와 같은 재난 상황을 실시간으로 검출하는 알고리즘을 구현하였다. 구현된 시제품의 시험 평가 결과, 제시된 요구 기능을 모두 만족하였으며 시스템의 실용성을 확인하였다.
The existing model for sentiment analysis of product reviews learned from past data and new data was labeled based on training. But new data was never used by the existing system for making a decision. The proposed Aspect-based multi-agent Deep Reinforcement learning Sentiment Analysis (ADRSA) model learned from its very first data without the help of any training dataset and labeled a sentence with aspect category and sentiment polarity. It keeps on learning from the new data and updates its knowledge for improving its intelligence. The decision of the proposed system changed over time based on the new data. So, the accuracy of the sentiment analysis using deep reinforcement learning was improved over supervised learning and unsupervised learning methods. Hence, the sentiments of premium customers on a particular site can be explored to other customers effectively. A dynamic environment with a strong knowledge base can help the system to remember the sentences and usage State Action Reward State Action (SARSA) algorithm with Bidirectional Encoder Representations from Transformers (BERT) model improved the performance of the proposed system in terms of accuracy when compared to the state of art methods.
초고해상도 콘텐츠는 파일 크기가 매우 크기 때문에 기존의 부호화 기술로는 네트워크를 통해 전송하는 것이 불가능하다. 고효율의 부호화 기법인 HEVC를 이용하면 네트워크 전송이 가능하나 압축시간이 많이 필요하기 때문에 분산 트랜스코딩 시스템이 필요하다. 분산 트랜스코딩 시스템은 데이터를 분산하여 저장한 뒤 다수의 노드를 이용하여 부호화한다. 그러나 분산 트랜스코딩 시스템은 분산된 정보가 노출되거나 내부관리자의 공격에 취약하다는 문제점이 있다. 본 논문에서는 초고해상도 콘텐츠를 트랜스코딩 할 때, 분산 트랜스코딩 시스템의 기밀성이 보장되지 않는다는 문제점을 해결하고자 한다. 우리는 SNA를 이용하여 데이터 노드에서 HEVC로 부호화된 콘텐츠 데이터를 비밀분산기법을 통해 암호화하여 저장했다. 결과적으로 안전한 분산 트랜스코딩이 가능하고, 내부관리자의 공격을 방지할 수 있다.
As cyber-attacks on Cyber-Physical System (CPS) become more diverse and sophisticated, it is important to quickly detect malicious behaviors occurring in CPS. Since CPS can collect sensor data in near real time throughout the process, there have been many attempts to detect anomaly behavior through normal behavior learning from the perspective of data-driven security. However, since the CPS datasets are big data and most of the data are normal data, it has always been a great challenge to analyze the data and implement the anomaly detection model. In this paper, we propose and evaluate the Clustered Deep One-Class Classification (CD-OCC) model that combines the clustering algorithm and deep learning (DL) model using only a normal dataset for anomaly detection. We use auto-encoder to reduce the dimensions of the dataset and the K-means clustering algorithm to classify the normal data into the optimal cluster size. The DL model trains to predict clusters of normal data, and we can obtain logit values as outputs. The derived logit values are datasets that can better represent normal data in terms of knowledge distillation and are used as inputs to the OCC model. As a result of the experiment, the F1 score of the proposed model shows 0.93 and 0.83 in the SWaT and HAI dataset, respectively, and shows a significant performance improvement over other recent detectors such as Com-AE and SVM-RBF.
고령화로 인해 증가하는 노인 비율만큼이나 치매를 앓는 노인 수 또한 빠르게 늘고 있는데 이는 사회적, 경제적 부담을 발생시킨다. 특히, 간병인의 근무 시간 손실 및 간호 부담으로 인한 의료 비용 증가와 같은 간접비용을 포함하는 치매 관리 비용은 수년에 걸쳐 기하급수적으로 증가하고 있다. 이러한 비용을 줄이기 위해 치매 환자를 돌보기 위한 관리 시스템 도입이 시급하다. 따라서 본 연구는 항상 치매 환자를 돌볼 수 없는 환경이나 독거노인을 관리하기 위한 센서 기반 이상 행동 탐지 시스템을 제안한다. 기존 연구들은 단지 행동을 인지하거나 정상 행동 여부를 평가하는 정도였고 센서로부터 받은 데이터가 아닌 이미지를 처리하여 행동을 인지한 연구도 있었다. 본 연구에서는 실데이터 수집에 한계가 있음을 인지하여 비지도 학습 모델인 오토인코더와 지도 학습 모델인 장·단기 기억 모형을 동시에 사용했다. 비지도 학습 모델인 오토인코더는 정상 행동 데이터를 학습하여 정상적인 행동에 대한 패턴을 학습시켰고 장·단기 기억 모형은 센서로 인지 가능한 행동을 학습시켜 분류를 좀 더 세분화했다. 테스트 결과 각각의 모델은 약 96%, 98% 이상의 정확도를 도출하였고 오토인코더의 이상치가 3% 이상을 갖는 경우 장·단기 기억 모형을 통과하도록 설계했다. 이 시스템을 통해 혼자 사는 노인이나 치매 환자를 효율적으로 관리할 수 있으며 돌보기 위한 비용 또한 절감할 수 있을 것으로 전망된다.
전자저널의 발전과 다양한 융복합 연구들이 생겨나면서 연구를 게시할 저널의 선택은 신진 연구자들은 물론 기존 연구자들에게도 새로운 문제로 떠올랐다. 논문의 수준이 높더라도 논문의 주제와 저널 범위의 불일치로 인해 게재가 거부될 수 있기 때문이다. 이러한 문제를 해결하기 위해 연구자의 저널 선정을 돕기 위한 연구는 영문 저널을 대상으로는 활발하게 이루어졌으나 한국어 저널을 대상으로 한 연구는 그렇지 못한 실정이다. 본 연구에서는 한국어 저널을 대상으로 투고할 저널을 추천하는 시스템을 제시한다. 첫 번째 단계는 과거 저널에 게재된 논문들의 초록을 SBERT (Sentence-BERT)를 이용하여 문서 단위로 임베딩하고 새로운 문서와 기존 게재논문의 유사도를 비교하여 저널을 추천하는 것이다. 다음으로 초록의 유사도 여부, 키워드 일치 여부, 제목 유사성을 고려하여 추천할 저널의 순서가 결정되고, 저널별로 구축된 단어 사전을 이용하여 선순위 추천 저널과 유사한 저널을 찾아 추천 리스트에 추가하여 추천 다양성을 높인다. 이러한 방식으로 구축된 추천 시스템을 평가한 결과 Top-10 정확도 76.6% 수준으로 평가되었으며, 추천 결과에 대한 사용자의 평가를 요청하고 추천 결과의 유효성을 확인하였다. 또한, 제안된 프레임워크의 각 단계가 추천 정확도를 높이는 데에 도움이 된다는 결과를 확인하였다. 본 연구는 그동안 활발히 이루어지지 않았던 국문 학술지 추천에 대한 새로운 접근을 제시한다는 점에서 학술적 의의가 있으며, 제안된 기능을 문서와 저널 보유상태에 따라 변경하여 손쉽게 서비스에 적용할 수 있다는 점에서 실무적인 의의를 가진다.
The large process plant is currently implementing predictive maintenance technology to transition from the traditional Time-Based Maintenance (TBM) approach to the Condition-Based Maintenance (CBM) approach in order to improve equipment maintenance and productivity. The traditional techniques for predictive maintenance involved managing upper/lower thresholds (Set-Point) of equipment signals or identifying anomalies through control charts. Recently, with the development of techniques for big analysis, machine learning-based AAKR (Auto-Associative Kernel Regression) and deep learning-based VAE (Variation Auto-Encoder) techniques are being actively applied for predictive maintenance. However, this predictive maintenance techniques is only effective during steady-state operation of plant equipment, and it is difficult to apply them during start-up and shutdown periods when rises or falls. In addition, unlike processes such as nuclear and thermal power plants, which operate for hundreds of days after a single start-up, because the pumped power plant involves repeated start-ups and shutdowns 4-5 times a day, it is needed the prediction and alarm algorithm suitable for its characteristics. In this study, we aim to propose an approach to apply the optimal predictive alarm algorithm that is suitable for the characteristics of Pumped Storage Power Plant(PSPP) facilities to the system by analyzing the predictive maintenance techniques used in existing nuclear and coal power plants.
Eureka 147 디지털오디오방송(DAB) 시스템은 CD 품질의 오디오 전송을 위하여 유럽에서 개발되었으나 한국에서는 이러한 DAB 시스템을 기반으로 하여 오디오뿐 만 아니라 비디오 신호도 전송할 목적으로 지상파 디지털 멀티미디어방송(T-DMB) 시스템을 개발하였다. 이러한 T-DMB 시스템의 성능 향상을 목적으로 본 논문에서는 양립성을 위해 기존 T-DMB 시스템 표준안에 정의된 펑쳐링 절차와 평처링 벡터를 이용하면서 터보 부호가 적용된 2가지 형태의 새로운 터보부호화된 T-DMB 시스템 모델을 제시한다. 첫 번째 모델 (Type 1)은 기존의 RS 코드, 콘볼류션 인터리빙, RCPC 코드를 터보코드로 대체시킨 것이며 두 번째 모델(Type 2)은 기존 RCPC 만을 터보부호로 대체시킨 모델이다. 시뮬레이션 결과 제안된 모델은 단지 2회 반복만으로도 상당한 성능 향상을 얻을 수 있음을 알 수 있었으며 또한 두 번째 모델은 첫 번째 모델에 비해 약간 우수한 성능을 보이고 있다.
As meters become digital and smart, energy data such as electricity, gas, heat, and water can be accurately and efficiently measured with a smart meter, providing consumers with data on energy used, so that real-time demand response and energy management services can be utilized. Although it is developing from a simple metering system to a smart metering industry to create a high value-added industry fused with ICT, illegal counterfeiting of electronic meters is causing problems in intelligent crimes such as manipulation and hacking of SW. The meter not only allows forgery of the meter data through arbitrary manipulation of the SW, but also leaves a fatal error in the metering performance, so that the OIML requires the validation of the SW from the authorized institution. In order to solve this problem, a quantitative confirmation device was developed in order to eradicate the act of cheating the fuel oil quantity through encoder pulse operation and program modulation, etc. In order to prevent the act of deceiving the lubricator, a device capable of checking pulse forgery was developed, manufactured, and verified. In addition, the performance of the device was verified by conducting an experiment on the meter being used in the actual field. It is judged that the developed quantitative confirmation device can be applied to other flow meters other than lubricators, and in this case, accurate measurement can be induced.
최근 산업 자동화 분야에서는 고속 통신을 지원하면서도 여러 장치로 구성된 시스템을 통합하고 관리하는 데 유리한 필드버스 방식의 통신 기술이 널리 활되는 추세이다. 운동하는 물체의 위치를 감지할 뿐만 아니라, 외부 제어기가 통신을 통해 다수의 엔코더에 대해 동시에 설정을 변경하거나 위치와 관련된 다양한 정보를 요청하는 환경에서 동작하는 스마트 엔코더의 경우에는 필드버스 지원이 필수적인 기능으로 인식된다. 본 논문에서는 CAN 네트워크 기반의 상위 응용 계층을 정의하는 CANopen 표준 중 엔코더의 장치 프로파일인 CiA 406 표준을 지원하기 위해 오픈 소스 CANopen 프레임워크인 CanFestival 을 확장, 구현하였다. 구현된 CiA 406 모듈의 동작은 CANopen 마스터 장치와 CiA 406 모듈을 적한 가상 CANopen 엔코더와의 실험을 통해 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.