• Title/Summary/Keyword: Encapsulation efficiency

Search Result 174, Processing Time 0.031 seconds

A Link Protection Scheme with a Backup Link Spanning Tree for Provider Backbone Bridged Networks and Implementation (프로바이더 백본 브리지 망을 위한 백업링크 스패닝트리 기반 링크장애 복구기능과 구현)

  • Nam, Wie-Jung;Lee, Hyun-Joo;Yoon, Chong-Ho;Hong, Won-Taek;Moon, Jeong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.58-68
    • /
    • 2010
  • In this paper, we propose an efficient link protection switching scheme for provider backbone bridge systems with a spanning tree for backup links exclusively, and evaluate its performance. The proposed scheme offers guaranteed QoS flows even when a link fault occurrs in the primary link by flooding the flows over the profiled spanning tree. The flooding mechanism over the spanning tree can also provide low latency and remove the loopback flows. We also derive the efficiency of bandwidth usage for the normal flows and the number of lost frames during the link restoration. For evaluating its feasibility, we implement a prototype of PBB-TE systems based on the Linux bridge codes, which can support both link protection switching capability with CCM and MAC-in-MAC encapsulation. A related protocol analyzer is also developed. One can see that the proposed scheme and the prototype can be useful for developing carrier class Ethernet systems based on PBB-TE.

Quality Characterization of Salmon Oil Microencapsulated with Various Wall Materials (다양한 피복물질을 이용한 연어 오일의 미세캡슐화 및 품질 특성)

  • LIM, Hyun-Jung;PARK, Seul-Ki;KIM, Min-Jeong;LEE, Won-Kyung;MIN, Jin-Ki;CHO, Young-Je
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1334-1342
    • /
    • 2015
  • The aim of this study was to investigate the quality characterization of salmon oil microencapsulated with maltodextrin (MD), cyclodextrin (CD), sodium caseinate (SC), arabic gum (AG) and WPI. After spray drying to ambient temperature, the salmon oil powders were packed (single package) and placed at room temperature ($25^{\circ}C$) for 30 day. The quality characterization of salmon oil powder including total oil (%), extractable oil (%), encapsulation efficiency (%), fatty acid, SEM, pH, acid value (AV), peroxide value(POV) were investigated. Salmon oil was microencapsulated with a high power yield (> 80%); including the formulation MD/SC and MD/SC/WPI. The microencapsules of MD/SC/WPI presented spherical shapes, smooth texture and non-porous surfaces. The pH of MD/SC/WPI varied from 6.11 to 5.99 (p>0.05). The AV of MD/SC/WPI varied from 4.74 to 4.61 (p>0.05). The pH and AV were not significantly different. The POV of MD/SC/WPI increased with storage day (p<0.05). It was concluded that MD/SC/WPI could delay lipid oxidation and high yield (82.55%) of salmon oil powder.

Development and Characterization of a Hydrolyzed Goat Milk Protein/Chitosan Oligosaccharide Nano-Delivery System (산양유 단백질 분해물/키토올리고당 나노 전달체 제조 및 물리화학적 특성연구)

  • Ha, Ho-Kyung;Kim, Jin Wook;Han, Kyoung-Sik;Yun, Sung Seob;Lee, Mee-Ryung;Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.208-214
    • /
    • 2017
  • The aims of this study were to manufacture a hydrolyzed goat milk protein (HGMP)/chitosan ologisaccharide (CSO) nano-delivery system (NDS) and to investigate the effects of production variables, such as sodium tripolyphosphate (TPP), HGMP, and CSO concentration levels, on the formation and physicochemical properties of the NDS. An HGMP/CSO NDS was produced using the ionic gelation method at pH 5.5. Transmission electron microscopy and a particle size analyzer were used to determine the morphological and physicochemical properties of NDSs, respectively. The size of the HGMP/CSO NDS decreased from 225 to 138 nm as HGMP and CSO concentration levels decreased. The NDS had a positive surface charge, with a zeta-potential value of +23 mV. The encapsulation efficiency (EE) of docosahexaenoic acid was enhanced as the HGMP concentration level increased. Additionally, increasing the concentration level of CSO resulted in an increase in the EE of resveratrol. The HGMP/CSO NDS exhibited good physical stability during freeze-drying. Thus, our findings showed that the HGMP/CSO NDS was successfully manufactured and that HGMP and CSO concentration levels were key factors affecting the physicochemical properties of the NDS.

Assessment of Discoidal Polymeric Nanoconstructs as a Drug Carrier (약물 운반체로서의 폴리머 디스크 나노 입자에 대한 평가)

  • BAE, J.Y.;OH, E.S.;AHN, H.J.;KEY, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Chemotherapy, radiation therapy, and surgery are major methods to treat cancer. However, current cancer treatments report severe side effects and high recurrences. Recent studies about engineering nanoparticles as a drug carrier suggest possibilities in terms of specific targeting and spatiotemporal release of drugs. While many nanoparticles demonstrate lower toxicity and better targeting results than free drugs, they still need to improve their performance dramatically in terms of targeting accuracy, immune responses, and non-specific accumulation at organs. One possible way to overcome the challenges is to make precisely controlled nanoparticles with respect to size, shape, surface properties, and mechanical stiffness. Here, we demonstrate $500{\times}200nm$ discoidal polymeric nanoconstructs (DPNs) as a drug delivery carrier. DPNs were prepared by using a top-down fabrication method that we previously reported to control shape as well as size. Moreover, DPNs have multiple payloads, poly lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), lipid-Rhodamine B dye (RhB) and Salinomycin. In this study, we demonstrated a potential of DPNs as a drug carrier to treat cancer.

Development of Porous Cellulose-Hydrogel System for Enhanced Transdermal Delivery of Quercetin and Rutin (Quercetin과 Rutin의 피부 흡수 증진을 위한 셀룰로오스 다공성 하이드로젤 제형 개발)

  • Lee, Min Hye;Kim, Su Ji;Park, Soo Nam
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.347-355
    • /
    • 2013
  • In this study, the porous cellulose hydrogel as a carrier to enhance the skin delivery of quercetin and its glycoside, rutin known as flavonoid antioxidants was prepared and its properties were investigated. The optimum cellulose hydrogel for quercetin and rutin was made by the reaction of 2 wt% cellulose with 12% ECH. In the release test of the hydrogel containing the flavonoids, the release of quercetin was diffusion-controlled at $10{\sim}500{\mu}M$, but rutin was released by the erosion of hydrogel system at $10{\sim}50{\mu}M$. Both the encapsulation efficiency and release amount of rutin in hydrogel were higher than quercetin. However, in skin permeation experiment using Franz diffusion cell, quercetin showed higher skin permeation capacity than rutin. The hydrogel containing flavonoids showed remarkable transdermal permeation than the control group. These results suggest that porous cellulose hydrogel is potential drug delivery system to enhance transdermal permeation of water-insoluble flavonoid antioxidants.

Determination of Exposure Dose Rate and Isotropic Distributions of Substitute High Dose Rate Ir-192 Source for Co-60 Brachytherapy Source (원격강내조사용 Co-60 선원의 대체용 Ir-192 선원의 조사선량결정 및 선량 등방성조사)

  • 최태진;원철호;김옥배;김시운;김금배;조운갑;한현수;박경배
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.55-64
    • /
    • 1998
  • In recent, the demand of development of the high dose rate brachytherapy source increased for substitute for Co-60 source by iridium source, since the supplying Co-60 source is very depressed and the high dose rate brachytherapy sources are entirely imported from the abroad. This study investigated the exposure rates and isotropic dose distributions for the Ir-192 source produced from $\^$191/Ir(n,r)$\^$192/Ir by nuclear reactor in Korea Atomic Energy Research Institute. The activity of source was obtained an 1.012 Ci (the initial activity without encapsulation was 2,87Ci) by measurement with encapsuled stainless steel. The exposure rate of provided Ir-192 source was determined on 6.36 ${\pm}$ 0.147 Rm$^2$/h-GBq (2.350 ${\pm}$ 0.054 Rcm$^2$/mCi-hr) within ${\pm}$ 2.2% discrepancy with IC-10 ion chamber (0.14 cc) which was mounted on the acrylic jig to 5, 10 and 20 cm from the center of source. The calculated doses with 22 most significant spectrum lines were corrected with intrinsic efficiency of the germanium detector were compared to measured exposure dose rates within ${\pm}$3.8 % discrepancy. The authors confirmed the high dose rate Ir-192 source could be replaced the long decayed Co-60 source via investigation of the isotropic dose distributions in lateral, source axis and diagonal direction of source center are very closed to within 3% uncertainties. Especially, this exposure rate constant and isotropic dose distribution will be fundamental to build the high dose rate source and develop the computed therapy planning system.

  • PDF

Preparation and Characterizatino of Nano-sized Liposome Containing Proteins Derived from Coptidis rhizoma (황련유래 단백질이 함유된 나노리포좀의 제조 및 특성)

  • Oh, Seng Ryong;Lee, Sang Bong;Cho, Kye Min;Choi, Moon Jae;Jin, Byung Suk;Han, Yong Moon;Lee, Young Moo;Shim, Jin Kie
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • Coptidis Rhizoma, an antimicrobial agent from natural source, is known to have the antiviral effect on the Candida albicans that causes the infectious dermatitis. The valuable protein was extracted from the Coptidis Rhizoma, To prevent denaturalization from external stimulus and improve adsorption onto the skin, the nano-sized liposomes were prepared as a carrier. The CPR-containing liposomes showed an average diameter of 187 nm, surface charge of 3.337 mV and 33% encapsulation efficiency. The release behavior of CRP from the liposome was investigated with various temperature and releasing time. The PVA solution was coated on the surface of liposome to improve the stability. The coated liposome showed slow release behavior in comparison with the non-coated liposome. The CRP in the liposome maintained the effect on the Candida albicans after treating it at 50 and with ultraviolet for 24 h.

Photovoltaic Characteristic of Thin Films Based on MEH-PPV/DFPP Blends

  • Mun, Ji-Seon;Kim, Su-Hyeon;Lee, Jae-U;Lee, Seok;Kim, Seon-Ho;Kim, Dong-Yeong;Choe, Hye-Yeong;Yun, Seong-Cheol;Lee, Chang-Jin;Kim, Yu-Jin;Lee, Geung-Won;Byeon, Yeong-Tae
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.28-29
    • /
    • 2005
  • 본 논문에서는 MEH-PPV와 DFPP의 폴리머 물질을 이용하여 photovoltaic device가 제작되었고, 그림 1에 두 물질의 분자 구조가 보여진다. Photovoltaic cell의 전기-광학적 특성은 활성층의 폴리머 물질에 의해 결정된다. 이러한 특성을 알아보기 위해서 홉수 스펙트럼이 측정되었다. DFPP는 chloroform, chlorobenzen, THF, acetone에 잘 녹았으며, 본 논문에서는 chloroform이 용매로 사용되었다. 제작 공정은 다음과 같다. 인듐 주석 산화물 (ITO)이 증착된 유리기판은 photolithography 공정을 거친 후, 왕수(HNO$_{3}$ + HCL)로 식각됨으로서 전극의 패턴이 제작되었다. 그리고 ITO 전극 패턴 된 유리기판 위에 PEDOT (CH8000, Baytron)이 코팅된 후 Ar이 주입되는 Convection Oven을 이용하여 120$^{\circ}$C에서 2시간 동안 열처리되어 수분이 제거되었다. 활성층에는 MEH-PPV와 DFPP가 9:1과 2.33:1로 혼합된 폴리머가 사용되었고, 이것은 0.3 %w.t.가 되도록 chloroform에 넣어 5시간 동안 스핀바를 돌려서 용해되었다. 이 용액은 ITO 전극 패턴이 형성된 글라스 위에 3000 rpm으로 45 초간 스핀코팅 되었다. 이 때 얻어진 유기물 박막층은 80$^{\circ}$C의 Ar이 주입되는 convection oven에서 3시간 동안 경화되었다. 경화된 단층 유기물 박막층 위에 Li-Al이 1000 ${\AA}$의 두께로 증착되어 전극이 형성되었고, 이후 질소가 채워진 globe box에서 소자는 encapsulation되어 산소와 수분에 대한 영향으로부터 차단되었다. 상기의 공정으로 제작된 소자의 박막구조는 그림 2에서 보여진다. 그림 3은 MEH-PPV와 DFPP를 혼합했을 때의 흡수 스펙트럼이다. 최대 흡수 파장은 511 nm였다. 그리고 photovoltaic cell의 V-I 특성 결과가 그림 4와 같이 측정되었다. 측정에서는 300${\sim}$700 nm의 파장대를 갖는 태양광 모사계가 사용되었고, 셀의 면적은 10 mm$^{2}$였다. 그림 5의 I-V 특성으로부터 MEH-PPV와 DFPP가 9:1 로 혼합했을 때보다 2.33:1 로 혼합했을 때, photovoltaic device의 효율이 향상됨을 확인할 수 있다. 빛이 75 mW/cm$^{2}$ 의 세기로 조사될 때 9:1과 2.33:1로 혼합된 소자의 open circuit voltage (V$_{oc}$)는 비슷하지만, short circuit current Density (J$_{sc}$)는 각각 -1.39 ${\mu}$A/cm$^{2}$ 와 -3.72${\mu}$A/cm$^{2}$ 로 약 2.7배 정도 증가되었음을 볼 수 있다. 이러한 결과를 통해 electron acceptor인 DFPP의 비율이 높아질수록 photovoltaic cell의 conversion efficiency가 더 크게 됨을 확인할 수 있다. 그러므로 효율이 최대가 되는 두 폴리머의 혼합 비율이 최적화되는 조건을 찾는 것은 매우 중요한 연구가 될 것이다.

  • PDF

Preparation of Protein-coated Cationic Liposomes Containing Doxorubicin and Their Binding Property of Blood Plasma Protein (독소루비신을 함유하고 단백질로 수식된 양이온성 리포솜의 제조 및 혈장 단백흡착 특성)

  • Kim, Sung-Kyu;Jung, Soon-Hwa;Jung, Suk-Hyun;Seong, Ha-Soo;Chi, Sang-Cheol;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • are nanometer or micrometer scale vesicles that can be used as drug delivery carriers. However, plain liposomes are plagued by rapid opsonization, making their circulation time in bloodstream be shortened. In this study, model protein, bovine serum albumin (BSA)-coated liposomes were prepared by coating cationic liposomes with BSA molecules at higher pH than isoelectric point of BSA. The BSA molecules coated on the liposomal surface were denatured by thermal treatment at above 60oC. While both plain and cationic liposomes had about mean particle diameter of 1041 nm, BSA-coated cationic liposomes (BCL) had mean particle diameter of 1091 nm. Encapsulation of model drug, doxorubicin (DOX), in liposomes were carried out by using remote loading method and the loading efficiency of DOX to liposomes was about 90%. The mean particle diameter of BCL did not increase in blood plasma and adsorption of plasma protein was much less than plain or cationic liposomes. These results suggest that BCL can be used as a long-circulating liposomes in bloodstream.

Preparation and Characteristics of Ipriflavone-Loaded PLGA Microspheres (이프리플라본을 함유한 생분해성 미립구의 제조와 특성분석)

  • 이진수;강길선;이종문;신준현;정제교;이해방
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • Ipriflavone (IP) stimulates proliferation and differentiation of osteoblast and also enhances calcitonin secretion in the presence of estrogen. Poly(lactide-co-glycolide) (PLCA) due to its controllable biodegradability and relatively good biocompatibility is one of the most significant candidates for the study of drug controlled release system. In this study, IP-loaded PLGA microspheres (MSs) was prepared by using conventional O/W solvent evaporation method. The size of MSs was in the range of 5~200 $mu extrm{m}$. The morphology of MSs was characterized by SEM. And, in vitro release amounts of IP were analyzed by HPLC. The highest encapsulation efficiency were obtained by using gelatin and polyvinyl alcohol (PVA) as emulsifiers. The morphology, size distribution, and in vitro release pattern of MSs were changed by several preparation parameters such as molecular weights (8, 20, 33 and 90 kg/mol), polymer concentrations (2.5, 5, 10 and 20%), emulsifier types (PVA, gelatin and Tween 80), initial drug loading amount (5, 10, 20 and 30%) and stirring speed (250, 500 and 1000 rpm). The release of IP in vitro was more prolonged over 30 days, with close to zero-order pattern by controlling the preparation parameters. The physicochemical properties of IP-loaded PLGA MSs were investigated by XRD and DSC.