• Title/Summary/Keyword: Encapsulation Process

Search Result 162, Processing Time 0.028 seconds

Barix Multilayer Barriers; a key enabler for protecting OLED displays and flexible organic devices

  • Moro, L.L.M.;Rutherford, N.;Chu, X.;Visser, R.J.;Graf, G.C.;Gross, M.E.;Bennet, W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.616-619
    • /
    • 2005
  • OLED display are extremely sensitive to water and oxygen. Developing a thin film encapsulation for this technology has for a long time been elusive. Vitex has developed a multilayer barrier consisting of alternating inorganic and organic layers which can meet the requirements for a successful protection for such displays. In this paper we will discuss the basic process, the model, the results on top and bottom emission OLED displays as well as the application of Barix layers on plastic to create flexible OLED displays. We will show that for displays all the requirement for the telecommunication industry can be met and that the we can scale up to a mass manufacturing process.

  • PDF

Control of Contaminants Elution by Solidification of Contaminated Soil (오염토양의 고형화에 따른 오염물질 용출제어)

  • Chung, Ha-Ik;Cho, Jin-Woo;Yu, Jun;Lee, Yong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.739-742
    • /
    • 2002
  • Immobilization of contaminants in contaminated soils by solidification processes is an attractive potential remediation process. In this study, the treatability of lead, copper, toluene, and COD was investigated by leaching test. Industrial sand was adopted as the test material and was contaminated with lead copper, and toluene to 100mg/kg, 500mg/kg, 200mg/kg respectively. P solidifying agent was used as the binder(20% by weight of contaminated soil) in the solidification treatment. The leachability of contaminants leached from the solidified soil was evaluated using column test. The percentage of contaminants leached from the solidified soil was significantly reduced by reaction of waste species with cement components and encapsulation reaction of binder. Based on the tests, it is ascertained solidification process can be a very effective method to control the elution of contaminants from the contaminated soil.

  • PDF

Synthesis and Characteristics of Different Ratio of Stearic Acid with SiO2 Shell Through Sol-Gel Process (Sol-gel 공정을 통한 SiO2 쉘과의 상이한 스테아산 비율의 합성 및 특성)

  • Ishak, Shafiq;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.66-67
    • /
    • 2020
  • The synthesis of stearic acid composite phase change material (PCM) was investigated and the samples produced were characterized for use in latent heat storage, using a simple chemical sol-gel process. The PCM was encapsulated to tetraethyl orthosilicate by various preparation ratios of stearic acid (5, 10, 15, 20, 30 and 50%). Fourier transformation infrared spectroscope (FT-IR) and X-Ray diffraction (XRD) were performed to determine the chemical structure and crystalloid phase of the microencapsulated PCM. SATEOS1 (5%) shows the best proportion for the PCM. With the presence of stearic acid as core materials and SiO2 as the supporting materials, it does not show any chemical reaction between both of them. SATEOS1 shows promising potential for thermal energy storage as it shows a better encapsulation efficiency and good thermal stability.

  • PDF

Development of Dispenser System with Electrohydrodynamic and Voice Coil Motor for White Light Emitting Diode (백색 LED 제조를 위한 정전기력과 보이스코일모터를 이용한 디스펜서 시스템 개발)

  • Kang, Dong-Seong;Kim, Ki-Beom;Ha, Seok-Jae;Cho, Myeong-Woo;Lee, Woo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6925-6931
    • /
    • 2015
  • LED(Light Emitting Diode) is used in various filed like a display because of low power consuming, long life span, high brightness, rapid response time and environmental-friendly characteristic. General fabrication method is combination blue light LED chip with yellow fluorescent substance. Because this way is suitable for industry field in terms of convenience, economic, efficiency. In white light LED packaging process, encapsulation process that is dispensing fluorescent substance with silicon to blue light LED chip is most important. So, in this paper we develop EHD pump system using voice coil motor and electrostatic pump for dispensing fluorescent substance. For these things we conduct basic test about liquid surface profiles by voltage and process time. Through this data we decide optimal process condition and verify the optimal condition using design of experiment method. And to confirm uniformity of the condition, we conduct repeat dispensing test.

Patterns of Protein Leaching to Dispersion Medium during W/O/W Double Emulsion-Based Microencapsulation Processes (이중유제법에 근거한 미립자 제조 공정 중 단백질의 분산매로의 전이 양상)

  • Cho, Mi-Hyun;Choi, Soo-Kyoung;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.369-377
    • /
    • 2004
  • The objective of this study was to investigate the patterns of protein leaching to an external phase during an ethyl acetate-based, double emulsion microencapsulation process. An aqueous protein solution (lactoglobulin, lysozyme, or ribonuclease; $W_1$) was emulsified in ethyl acetate containing poly-d,l-lactide-co-glycolide 75:25. The $W_1/O$ emulsion was transferred to a 0.5% polyvinyl alcohol solution saturated with ethyl acetate $(W_2)$. After the double emulsion was stirred for 5, 15, 30, or 45 min, additional 0.5% polyvinyl alcohol $(W_3)$ was quickly added into the emulsion. This so-called quenching step helped convert emulsion microdroplets into microspheres. After 2-hr stirring, microspheres were collected and dried. The degree of protein leaching to $W_2$ and/or $W_3$ phase was monitored during the microencapsulation process. In a separate, comparative experiment, the profile of protein leaching to an external phase was investigated during the conventional methylene chloride-based microencapsulation process. When ethyl acetate was used as a dispersed solvent, proteins continued diffusing to the $W_2$ phase, as stirring went on. Therefore, the timing of ethyl acetate quenching played an important role in determining the degree of protein microencapsulation efficiency. For example, when quenching was peformed after 5-min stirring of the primary $W_1/O$ emulsion, the encapsulation efficiencies of lactoglobulin and ribonuclease were $55.1{\pm}4.2\;and\;45.3{\pm}7.6%$, respectively. In contrast, when quenching was carried out in 45 min, their respective encapsulation efficiencies were $39.6{\pm}3.2\;and\;29.9{\pm}11.2%$. By sharp contrast, different results were attained with the methylene-chloride based process: up to 2 hr-stirring of the primary and double emulsions, less than 5% of a protein appeared in $W_2$. Afterwards, it started to partition from $W_1\;to\;W_2/W_3$, and such a tendency was affected by the amount of PLGA75:25 used to make microspheres. Different solvent properties (e.g., water miscibility) and their effect on microsphere hardening were to be held answerable for such marked differences observed with the two microencapsulation processes.

The Development of Whitening Cosmetic Ingredient Having Activity of Melanin Degradation (멜라닌 분해능을 지닌 미백용 기능성 화장품원료의 개발)

  • Kang, Whan-Koo;Hwang, Sun-Duk;Kim, Hyoung-Sik;Jeung, Jong-Sik;Lee, Bheong-Uk
    • KSBB Journal
    • /
    • v.22 no.1
    • /
    • pp.7-15
    • /
    • 2007
  • Extensive research was carried out for inhibition of melanin formation as development of whitening cosmetic ingredients. But degradation of melanin itself was not intensively pursued as development of cosmetics. In this study, novel melanin degradation enzyme was developed and characterized. Also this enzyme production process was optimized and formulation was tried using micro encapsulation technique.

Enhanced Gas Sensing Properties of Bi2O3-Core/In2O3-Shell Nanorod Gas Sensors

  • Park, Sung-Hoon;An, So-Yeon;Ko, Hyun-Sung;Jin, Chang-Hyun;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3368-3372
    • /
    • 2012
  • The $Bi_2O_3$ nanowires are highly sensitive to low concentrations of $NO_2$ in ambient air and are almost insensitive to most other common gases. However, it still remains a challenge to enhance their sensing performance and detection limit. This study examined the influence of the encapsulation of ${\beta}-Bi_2O_3$ nanorods with $In_2O_3$ on the $NO_2$ gas sensing properties. ${\beta}-Bi_2O_3-core/In_2O_3-shell$ nanorods were fabricated by a two-step process comprising the thermal evaporation of $Bi_2O_3$ powders and sputter-deposition of $In_2O_3$. Multiple networked ${\beta}-Bi_2O_3-core/In_2O_3-shell$ nanorod sensors showed the responses of 12-156% at 1-5 ppm $NO_2$ at $300^{\circ}C$. These response values were 1.3-2.7 times larger than those of bare ${\beta}-Bi_2O_3$ nanorod sensors at 1-5 ppm $NO_2$. The enhancement in the response of ${\beta}-Bi_2O_3$ nanorods to $NO_2$ gas by the encapsulation by $In_2O_3$ can be accounted for based on the space-charge model.

Analysis of Ingredient Mixtures for Cryoprotection and Gastrointestinal Stability of Probiotics (프로바이오틱스의 동결보호 및 장관안정성 개선을 위한 첨가제 효과 분석)

  • Jeong, Eun Ji;Moon, Dae Won;Oh, Joon Suk;Moon, Jin Seok;Kim, Kwang Yup;Choi, Hye Sun;Han, Nam Soo
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.109-113
    • /
    • 2015
  • Current drying and encapsulation methods for probiotics manufacturing are complicate and cost-burdened processes. The aim of this study was to develop a simple ingredient mixture to make probiotic granules via one-step process, providing not only a cryoprotective effect during freezing and drying but also high survival ratio in gastrointestinal tract. As cryoprotectans, commercially available ingredients including skim milk, monosaccharide (trehalose or glycerin), maltodextrins (with low or high degree of equivalents) were used. Their cryoprotective effect during lyophilization and survival ratios in artificial gastric juice and bile salt were measured against 3 strains of lactic acid bacteria (LAB) (Lactobacillus plantarum, Lb. brevis, and Lactococcus lactis). As results, 3 mixtures with different compositions showed a cryprotective effect on LAB tested and the best compostion was dependant upon LAB; skim milk 10%, trehalose 15%, glycerin 0.5%, and NaCl 1% was for Lb. plantarum and Lc. lactis, and maltodextrin 10% instead of skim milk was for Lb. brevis. In addition, those mixtures showed similar survival effect on LAB tested. These results demonstrate that skim milk or maltodextrins with trehalose, glycerin, and NACl can be effectively used for onestep lyophilization of LAB as an alternative method of encapsulation.

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • Baek, Chung-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • Lee, Eun-U;Park, Sun-Yong;Lee, Sang-Hwan;Kim, U-Nam;Jeong, U-Jin;Jeon, Chan-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF