• Title/Summary/Keyword: Encapsulation Process

Search Result 162, Processing Time 0.023 seconds

New SMOLED Deposition System for Mass Production

  • Lee, J.H.;Kim, C.W.;Choi, D.K.;Kim, D.S.;Bae, K.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.407-410
    • /
    • 2003
  • We will introduce our new concept deposition system for SMOLED manufacturing in this conference. This system is designed to deposit organic and metal material to downward to overcome the limit of substrate size and process tact time hurdle for OLED mass production, and is organized with organic deposition chamber, substrate pre-cleaning chamber, metal deposition chamber and encapsulation system. These entire process chambers are integrated with linear type substrate transfer system. We also compare our new SMOLED manufacturing system with conventional vacuum deposition systems, and show basic organic thin film property data, organic material deposition property data, and basic device property.

  • PDF

Development of Curing Process for EMC Encapsulation of Ultra-thin Semiconductor Package (초박형 반도체 패키지의 EMC encapsulation을 위한 경화 공정 개발)

  • Park, Seong Yeon;On, Seung Yoon;Kim, Seong Su
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.47-50
    • /
    • 2021
  • In this paper, the Curing process for Epoxy Molding Compound (EMC) Package was developed by comparing the performance of the EMC/Cu Bi-layer package manufactured by the conventional Hot Press process system and Carbon Nanotubes (CNT) Heater process system of the surface heating system. The viscosity of EMC was measured by using a rheometer for the curing cycle of the CNT Heater. In the EMC/Cu Bi-layer Package manufactured through the two process methods by mentioned above, the voids inside the EMC was analyzed using an optical microscope. In addition, the interfacial void and warpage of the EMC/Cu Bi-layer Package were analyzed through C-Scanning Acoustic Microscope and 3D-Digital Image Correlation. According to these experimental results, it was confirmed that there was neither void in the EMC interior nor difference in the warpage at room temperature, the zero-warpage temperature and the change in warpage.

Application of PCM Technology to Concrete II : Effects of SSMA(Sulfonated Styrene-Maleic Anhydride) on the Properties of the 1-Dodecanol Micro-Capsule (PCM 기술의 콘크리트 적용 II : 계면중합법에 의한 1-도데카놀 마이크로 캡슐에 있어서 계면활성제로 사용된 SSMA의 표면활성도가 마이크로 캡슐의 특성에 미치는 영향)

  • Shin, Se-Soon;Jung, Jae-Yun;Lim, Myung-Kwan;Choi, Dong-Uk;Kim, Young-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • Thermal storage technology used for indoor heating and cooling to maintain a constant temperature for a long period of time has an advantage of raising energy use efficiency. This, the phase changing material, which utilizes heat storage properties of the substances, capsulizes substances that melt at a constant temperature. This is applied to construction materials to block or save energy due to heat storage and heat protection during the process in which substances melt or freeze according to the indoor or outdoor temperature. The micro-encapsulation method is used to create thermal storage from phase changing material. This method can be broadly classified in 3 ways: chemical method, physical and chemical method and physical and mechanical method. In the physical and chemical method, a wet process using the micro-encapsulation process utilized. This process emulsifies the core material in a solvent then coats the monomer polymer on the wall of the emulsion to harden it. In this process, a surfactant is utilized to enhance the performance of the emulsion of the core material and the coating of the wall monomer. The performance of the micro-encapsulation, especially the coating thickness of the wall material and the uniformity of the coating, is largely dependent on the characteristics of the surfactant. This research compares the performance of the micro-capsules and heat storage for product according to molecular mass and concentration of the surfactant, SSMA (sulfonated styrene-maleic anhydride), when it comes to micro-encapsulation through interfacial polymerization, in which Dodecan-1 is transformed to melamin resin, a heat storage material using phase changing properties. In addition, the thickness of the micro-encapsulation wall material and residual melamine were reduced by adjusting the concentration of melamin resin microcapsules.

Enhancement of Anticancer Activities of Ephedra sinica Stapf Extracts by Nano-encapsulation (마황 추출물의 나노 입자화를 통한 항암 활성 증진)

  • Jeong, Hyang-Suk;Kim, Seoung-Seop;Oh, Sung-Ho;Jeong, Myoung-Hoon;Choi, Woon-Yong;Seo, Yong-Chang;Na, Chun-Soo;Kwak, Hyeong-Geun;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.3
    • /
    • pp.143-150
    • /
    • 2010
  • This study showed the increase of antitumor activities of water soluble E. sinica extract by nano-encapsulation process with lecithin. Five groups of lecithin only group (LO), lecithin nano-encapsulated E. sinica group (LE), E. sinica only group (EO), one negative control group (NCO) and positive control group (PCO) were set for several anticancer experiment and fed into Sarcoma-180 injected mice. The cytotoxicity of LE on the human normal kidney cell (HEK293) showed 14.8% lower than 19.2% of EO and 18.4% of LO. Growth of human liver carcinoma cell and human stomach carcinoma cell as representative of digestive system in vitro was inhibited up to about 85.1% and 87.3%, in adding 1.0 mg/$m{\ell}$ of LE, which values 15% higher than that from conventional EO. The survival rates of each mice group were 40%, 63%, 48%, 33% and 100%, respectively after 40 days of injecting Sarcoma-180. The increment of their body weights of the extract feeding groups was suppressed down to 10~15%, compared to the negative control. The nano-particles also reduced the hypertrophy of the internal organs such as spleen and liver down to 15~20%, compared to those as the other groups. Among them, LE effectively reduced the size of tumor form to 20%. From these results, in vitro and in vivo antitumor activities of E. sinica could be enhanced by using nano-encapsulation process with lecithin because of better permeation into the cancer cells by confocal observations.

The In vitro Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen

  • Heo, Wan;Kim, Eun Tae;Cho, Sung Do;Kim, Jun Ho;Kwon, Seong Min;Jeong, Ha Yeon;Ki, Kwang Seok;Yoon, Ho Baek;Ahn, Young Dae;Lee, Sung Sill;Kim, Young Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.365-371
    • /
    • 2016
  • This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens) was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation.

Changes of Aroma Compounds during Kimchi Powder Production and Encapsulation Effect of β-Cyclodextrin (김치 감압건조 시 향기성분의 변화 및 β-cyclodextrin의 향기성분 포집효과)

  • Eom, Hyun-Ju;Yoo, Ki-Seon;Yim, Chang Youn;Joo, Seoungjo;Han, Jinhee;Jin, Qing;Yoon, Hyang-Sik;Han, Nam Soo
    • Food Engineering Progress
    • /
    • v.13 no.3
    • /
    • pp.190-194
    • /
    • 2009
  • The aim of this study was to investigate the change of volatile aroma compounds in kimchi during fermentation, before and after drying process. Also, the encapsulation effect of cyclodextrin on volatiles during the drying process was examined. GC-MS was used for detection and identification of volatile compounds. During kimchi fermentation, in the early stage, dimethyl sulfide, carbon disulfide were detected as major compounds and after 7 days several sulfur compounds, dimethyl disulfide, methyl 2-propenyl disulfide, allyl methyl sulfide, and di-2-propenyl disulfide bacame the major volatiles. After vacuum-drying, the kimchi powder lost 11 compounds but still retained 13 volatiles of which major compounds were dimethyl sulfide, acetaldehyde and methanethiol. In order to keep volatiles in kimchi powder along with the drying process, 0.25-1.0% cyclodextrin was added in kimchi and dried-kimchi was prepared by using vacuum dryer. Cyclodextrin acted as an encapsulation agent for aroma compounds and it resulted in less loss of volatiles during drying process. Addition of cyclodextrin will permit industry-scale production of dried-kimchi powder with less loss of aroma compounds.

A Study on the Computational Design of Static Mixer and Mixing Characteristics of Liquid Silicon Rubber using Fluidic Analysis for LED Encapsulation (LED Encapsulation을 위한 스태틱 믹서의 전산 설계 및 유동해석을 이용한 액상 실리콘의 혼합 특성에 대한 연구)

  • Cho, Yong-Kyu;Ha, Seok-Jae;Huxiao, Huxiao;Cho, Myeong-Woo;Choi, Jong Myeong;Hong, Seung-Min
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.55-59
    • /
    • 2013
  • A Light Emitting Diode(LED) is a semiconductor device which converts electricity into light. LEDs are widely used in a field of illumination, LCD(Liquid Crystal Display) backlight, mobile signals because they have several merits, such as low power consumption, long lifetime, high brightness, fast response, environment friendly. In general, LEDs production does die bonding and wire bonding on board, and do silicon and phosphor dispensing to protect LED chip and improve brightness. Then lens molding process is performed using mixed liquid silicon rubber(LSR) by resin and hardener. A mixture of resin and hardener affect the optical characteristics of the LED lens. In this paper, computational design of static mixer was performed for mixing of liquid silicon. To evaluate characteristic of mixing efficiency, finite element model of static mixer was generated, and fluidic analysis was performed according to length of mixing element. Finally, optimal condition of length of mixing element was applied to static mixer from result of fluidic analysis.

  • PDF

Induced Death of Escherichia coli Encapsulated in a Hollow Fiber Membrane as Observed In Vitro or After Subcutaneous Implantation

  • Granicka, L. H.;Zolnierowicz, J.;Wasilewska, D.;Werynski, A.;Kawiak, J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.224-228
    • /
    • 2010
  • The encapsulation of bacteria may be used to harness them for longer periods of time in order to make them viable, whereas antibiotic treatment would result in controlled release of therapeutic molecules. Encapsulated Escherichia coli GFP (green fluorescent protein) (E. coli GFP) was used here as a model for therapeutic substance - GFP fragments release (model of bioactive substances). Our aim was to evaluate the performance of bacteria encapsulated in hollow fibers (HFs) treated with antibiotic for induction of cell death. The polypropylene-surface-modified HFs were applied for E. coli encapsulation. The encapsulated bacteria were treated with tetracycline in vitro or in vivo during subcutaneous implantation into mice. The HF content was evaluated in a flow cytometer, to assess the bacteria cell membrane permeability changes induced by tetracycline treatment. It was observed that the applied membranes prevented release of bacteria through the HF wall. The E. coli GFP culture encapsulated in HF in vitro proved the tetracycline impact on bacteria viability and allows the recognition of the sequence of events within the process of bacteria death. Treatment of the SCID mice with tetracycline for 8 h proved the tetracycline impact on bacteria viability in vivo, raising the necrotic bacteria-releasing GFP fragments. It was concluded that the bacteria may be safely enclosed within the HF at the site of implantation, and when the animal is treated with antibiotic, bacteria may act as a local source of fragments of proteins expressed in the bacteria, a hypothetical bioactive factor for the host eukaryotic organism.

Enhancement of Antioxidant Activities and Whitening Effect of Acer mono Sap Through Nano Encapsulation Processes (고로쇠 수액 나노입자의 항산화 활성 및 미백 효과의 증진)

  • Kim, Ji-Seon;Seo, Yong-Chang;Choi, Woon-Yong;Kim, Hack-Soo;Kim, Bo-Hyeon;Shin, Dae-Hyeon;Yoon, Chang-Soon;Lim, Hye-Won;Ahn, Ju-Hee;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.191-197
    • /
    • 2011
  • In this study, we investigated antioxidant activities and whitening effects of Acer mono sap by encapsulation of nanoparticles. Acer mono sap was through ultra high pressure process and then encapsulated by lecithin. Nano-encapsulated The nanoparticles of Acer mono sap showed highest free radical scavengering effect as 89.7% in adding sample (1.0 mg/ml), compared to sap of non-encapsulation. It was showed strong inhibition effect on melanin production test by Clone M-3 cells as 47.8%. High inhibitory of tyrosinase was also measured as 85.8% by adding lecithin nano-particle of 1.0 mg/ml. The nano-particles also showed 14.8% of low cytotoxicity against human normal fibroblast cells in adding 1.0 mg/ml of the highest concentration. These results indicate that Acer mono sap may be a source of cosmetic agents capable of improving whitening effect and antioxidant activites.

Low Temperature PECVD for SiOx Thin Film Encapsulation

  • Ahn, Hyung June;Yong, Sang Heon;Kim, Sun Jung;Lee, Changmin;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.198.1-198.1
    • /
    • 2016
  • Organic light-emitting diode (OLED) displays have promising potential to replace liquid crystal displays (LCDs) due to their advantages of low power consumption, fast response time, broad viewing angle and flexibility. Organic light emitting materials are vulnerable to moisture and oxygen, so inorganic thin films are required for barrier substrates and encapsulations.[1-2]. In this work, the silicon-based inorganic thin films are deposited on plastic substrates by plasma-enhanced chemical vapor deposition (PECVD) at low temperature. It is necessary to deposit thin film at low temperature. Because the heat gives damage to flexible plastic substrates. As one of the transparent diffusion barrier materials, silicon oxides have been investigated. $SiO_x$ have less toxic, so it is one of the more widely examined materials as a diffusion barrier in addition to the dielectric materials in solid-state electronics [3-4]. The $SiO_x$ thin films are deposited by a PECVD process in low temperature below $100^{\circ}C$. Water vapor transmission rate (WVTR) was determined by a calcium resistance test, and the rate less than $10.^{-2}g/m^2{\cdot}day$ was achieved. And then, flexibility of the film was also evaluated.

  • PDF