• Title/Summary/Keyword: Encapsulation Materials

Search Result 180, Processing Time 0.052 seconds

Three-dimensional numerical simulation of nonisothermal coextrusion process with generalized Newtonian fluids

  • Sunwoo, Ki-Byung;Park, Seung-Joon;Lee, Seong-Jae;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.165-173
    • /
    • 2000
  • Three-dimensional numerical simulation of isothermal/nonisothermal coextrusion process of two immiscible polymers through a rectangular channel has been done using the finite element method. The encapsulation phenomenon with the less viscous layer encapsulating the more viscous layer was investigated with the generalized Newtonian fluids. The interface position around the symmetric plane obtained by numerical simulation nearly coincided with the one observed in experiments, but the degree of encapsulation was less than the one observed experimentally. Open boundary condition method was found to be applied to the simulation of nonisothermal coextrusion process, however, the results are not far from those using the fully developed boundary condition, because the temperature development along the downstream direction is very slow in the case of convection dominated flow. When the inlet velocity is increased, the interface profile does not change in isothermal flow, while it moves upward in nonisothermal situation. The degree of encapsulation decreases along the downstream direction in nonisothermal flow. When the inlet temperature increases compared to the wall temperature, the outlet interface moves downward and the degree of encapsulation increases. The difference of degree of encapsulation between the simulation and the experiments seems to arise from the viscoelastic effect of the materials. It was concluded that the nonisothermal effect alone does not explain the complex coextrusion process and the viscoelastic effect needs to be considered.

  • PDF

Enhancement of Light Extraction in White LED by Double Molding (이중 몰딩에 의한 백색 LED의 광추출 효율 향상)

  • Jang, Min-Suk;Kim, Wan-Ho;Kang, Young-Rea;Kim, Ki-Hyun;Song, Sang-Bin;Kim, Jin-Hyuk;Kim, Jae-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.849-856
    • /
    • 2012
  • Chip on board type white light emitting diode on metal core printed circuit board with high thixotropy silicone is fabricated by vacuum printing encapsulation system. Encapsulant is chosen by taking into account experimental results from differential scanning calorimeter, shearing strength, and optical transmittance. We have observed that radiant flux and package efficacy are increased from 336 mW to 450 mW and from 11.9 lm/W to 36.2 lm/W as single dome diameter is varied from 2.2 mm to 2.8 mm, respectively. Double encapsulation structure with 2.8 mm of dome diameter shows further significant enhancement of radiant flux and package efficacy to 667 mW and 52.4 lm/W, which are 417 mW and 34.8 lm/W at single encapsulation structure, respectively.

Low Temperature PECVD for SiOx Thin Film Encapsulation

  • Ahn, Hyung June;Yong, Sang Heon;Kim, Sun Jung;Lee, Changmin;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.198.1-198.1
    • /
    • 2016
  • Organic light-emitting diode (OLED) displays have promising potential to replace liquid crystal displays (LCDs) due to their advantages of low power consumption, fast response time, broad viewing angle and flexibility. Organic light emitting materials are vulnerable to moisture and oxygen, so inorganic thin films are required for barrier substrates and encapsulations.[1-2]. In this work, the silicon-based inorganic thin films are deposited on plastic substrates by plasma-enhanced chemical vapor deposition (PECVD) at low temperature. It is necessary to deposit thin film at low temperature. Because the heat gives damage to flexible plastic substrates. As one of the transparent diffusion barrier materials, silicon oxides have been investigated. $SiO_x$ have less toxic, so it is one of the more widely examined materials as a diffusion barrier in addition to the dielectric materials in solid-state electronics [3-4]. The $SiO_x$ thin films are deposited by a PECVD process in low temperature below $100^{\circ}C$. Water vapor transmission rate (WVTR) was determined by a calcium resistance test, and the rate less than $10.^{-2}g/m^2{\cdot}day$ was achieved. And then, flexibility of the film was also evaluated.

  • PDF

Preparation of Polymer/Drug Nano- and Micro-Particles by Electrospraying

  • Lee, Jong-Hwi;Park, Chul-Ho;Kim, Min-Young;Yoo, Ji-Youn;Kim, Ki-Hyun;Lee, Jong-Chan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.217-217
    • /
    • 2006
  • The surface energy control capability of electrohydrodynamic force provides electrospraying with various potential advantages such as simple particle size control, mono-dispersity, high recovery, and mild processing conditions. Herein, the one step nano-encapsulation of protein drugs using electrospraying was developed. The major processing parameters such as the conductivity of spraying liquids, flow rate, the distance between electric potentials, etc were examined to obtain the maximum efficiency. The recovery of particles was found relatively high as could be conjectured based on the principle of electrospraying. When organic solvents were employed, the processing windows of electrospraying were relatively narrow than water systems. Efficient nano-encapsulation of BSA with polymers was conveniently achieved using electrospraying at above 12 kV.

  • PDF

A Study on Wall Materials for Flavor Encapsulation (향기 성분의 미세캡슐화를 위한 피복물질에 대한 연구)

  • Cho, Young-Hee;Shin, Dong-Suck;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1563-1569
    • /
    • 1999
  • For the encapsulation of flavor compounds, maltodextrin (MD), gum arabic (GA) alkenylsuccinated modified starch (MS) and gellan gum were chosen for wall materials and their combination was optimized. Five fruit flavor compounds having boiling point of $90{\sim}200^{\circ}C$ were selected as core materials and their mixture was incorporated with rapeseed oil (flavor mixture to oil = 1 : 4). Flavor compound mixture to wall material ratio of 1 : 4 was selected, and the amount of maltodextrin was fixed to 30% of the wall material mixture. Gellan gum was selected as an additional wall material to increase emulsion stability. The optimum combination ratio of the wall material mixture for maximal total oil retention and minimal surface oil content is : 30.0% MD ; 26.4% GA ; 39.6% MS ; 4% gellan gum.

  • PDF

3D Printed Electronics Research Trend (3차원 인쇄기술을 이용한 전자소자 연구 동향)

  • Park, Yea-Seol;Lee Ju-Yong;Kang, Seung-Kyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.1-12
    • /
    • 2021
  • 3D printing, which designs product in three dimensions, draws attention as a technology that will lead the future for it dramatically shortens time for production without assembly, no matter how complex the structure is. The paper studies the latest researches of 3D-printed electronics and introduces papers studied electronics components, power supply, circuit interconnection and 3D-printed PCBs' applications. 3D-printed electronics showed possibility to simplify facilities and personalize electric devices by providing one-stop printing process of electronic components, soldering, stacking, and even encapsulation.

Encapsulation Method of OLED with Organic-inorganic Protective Thin Films Sealed with Flat Glass (평판 유리로 봉인된 유-무기 보호 박막을 갖는 OLED 봉지 방법)

  • Park, Min-Kyung;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.381-386
    • /
    • 2012
  • To study encapsulation method for large-area organic light emitting diodes (OLEDs), red emitting OLEDs were fabricated, on which $Alq_3$ as organic buffer layer and LiF and Al as inorganic protective layers were deposited to protect the damage of OLED by epoxy. And then the OLEDs were attached to flat glass by printing method using epoxy. The basic structure of OLED doped with rubrene of 1 vol.% as emitting layer is ITO(150 nm) / 2-TNATA(50 nm) / ${\alpha}$-NPD(30 nm) / $Alq_3$:Rubrene(30 nm) / $Alq_3$(30 nm) / LiF(0.7 nm) / Al(100 nm). In case of depositing $Alq_3$, LiF and Al and then attaching of flat glass onto OLED, current density, luminance, efficiency and driving voltage were not changed and lifetime was increased according to thickness of Al as inorganic protective layers. The lifetime of OLED/$Alq_3$/LiF/Al_4/glass structure was 139 hours increased by 15.8 times more than bare OLED of 8.8 hours and 1.6 times more than edge sealed OLED of 54.5 hours.

Preparation of Resveratrol-loaded Poly($\varepsilon$-caprolactone) Nanoparticles by Oil-in-water Emulsion Solvent Evaporation Method

  • Kim, Bum-Keun;Lee, Jun-Soo;Oh, Ju-Kyoung;Park, Dong-June
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.157-161
    • /
    • 2009
  • Resveratrol-loaded poly($\varepsilon$-caprolactone) (PCL) nanoparticles were prepared by oil in water (O/W) emulsion solvent evaporation method. The morphology of the nanoparticles was evaluated using atomic force microscope (AFM), in which well-shaped and rigid nanoparticles were prepared. The mean particle size of nanoparticles prepared using only dichloromethane (DCM) ($523.5{\pm}36.7\;nm$) was larger than that prepared with a mixture of DCM and either ethanol (EtOH) ($494.5{\pm}29.2\;nm$) or acetone ($493.5{\pm}6.9\;nm$). The encapsulation efficiency of nanoparticles prepared only with DCM as dispersed phase ($78.3{\pm}7.7%$) was the highest of those prepared with solvent mixtures. An increase in the molecular weight of PCL led to an increase in encapsulation efficiency (from $78.3{\pm}7.7$ to $91.4{\pm}3.2%$). Pluronic F-127 produced the smallest mean size ($523.5{\pm}36.7\;nm$) with the narrowest particle size distribution. These results show that dispersed phase, molecular weight of wall materials, emulsion stabilizer could be important factors to affect the properties of nanoparticles.