• Title/Summary/Keyword: Enamel Demineralization

Search Result 95, Processing Time 0.023 seconds

THE EFFECT OF THE pH OF REMINERALIZED BUFFER SOLUTIONS ON DENTIN REMINERALIZXATION (재광화 완충용액의 pH 변화가 상아질의 재광화에 미치는 영향)

  • Kim, Sung-Chul;Roh, Bung-Duk;Jung, Il-Young;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.151-161
    • /
    • 2007
  • Dental caries is the most common disease in the oral cavity However, the mechanism and treatment of dental caries is not completely understood since many complex factors are involved. Especially the effect of pH on remineralization of early stage of dental caries is still controversial In this study, dental caries in dentin was induced by using lactic acidulated buffering solutions and the loss or inorganic substance was measured. Also decalcified specimens were remineralized by three groups of solution with different pH (group of pH 4.3, 5.0, and 5.5). Then, the amount and the area of inorganic substance precipitation was quantitatively analyzed with microradiograph. Also a qualitative comparison of the normal phase the demineralized phase, and the remineralized phase of hydroxyapatite crystal was made under SEM. The results were as follows, 1. In microradiograghic analysis, as the pH increased, the amount of remineralization in decalcified dentin tended to increase significantly As the pH decreaced, deeper decalcification, however, occurred along with remineralization. The group of pH 5.5 had a tendency to be remineralized without demineralization (p<0.05). 2. In SEM view, the remineralization in dentine caries occurred from the hydroxyapatite crystal surface surrounding the mesh of organic matrix, and eventually filled up the demineralized area. 3. 5 days after remineralization, hydroxyapatite crystal grew bigger with deposition of inorganic substance in pH 4.3 and 5.0 group, and the crystal in the remineralized area appeared to return to normal. After 10 days, the crystals in group of pH 4.3 and 5.0, which grew bigger after 5 days of remineralization, turned back to their normal size, but in group of pH 5.5, some crystals were found to double their size. In according to the results of this experiment, the decalcifying and remineralizing process of dentine is neither simple nor independent, but a dynamic process in which decalcification and remineralization occur simultaneously. The remineralization process occurred from the hydroxyapatite crystal surface.

Direct detection of cariogenic streptococci in metal brackets in vivo using polymerase chain reaction (교정용 메탈 브라켓에서 자가중합효소연쇄반응을 통한 치아우식증 원인균의 탈출)

  • Ahn, Sug-Joon;Lee, Shin-Jae;Baek, Seung-Hak;Kim, Tae-Woo;Chang, Young-Il;Nam, Dong-Seok;Lim, Bum-Soon
    • The korean journal of orthodontics
    • /
    • v.35 no.4 s.111
    • /
    • pp.312-319
    • /
    • 2005
  • Streptococcus mutans and Streptococcus sobrinus are major etiological agents in enamel demineralization around orthodontic appliances. This study was designed to examine the prevalence of these streptococci on orthodontic brackets in vivo using polymerase chain reaction. Four incisor brackets in the upper and lower arches were removed and collected from 80 patients at the time of debonding. The genomic DMA of adhered bacteria was extracted and each dextranase gene of S. mutans and S. sobrinus was amplified using the specific oligonucleotide primers. The results showed that the maxillary incisor brackets were colonized by both cariogenic streptococci to a somewhat higher degree than that taken from the mandible. The prevalence of S. mutans was $50.0\%$ on the maxillary incisor brackets and $33.8\%$ on the mandibular incisor brackets, and that of S. sobrinus was $17.5\%$ and $15.0\%$, respectively. Both species were detected on the maxillary incisor brackets of 7 patients $(8.8\%)$ and the mandibular incisor brackets of 5 patients $(6.3\%)$. These results suggest that cariogenic streptococci can adhere to the incisor brackets and may be resident species on the incisor brackets.

IDENTIFICATION OF THE AG I/II AND GTFD GENES FROM STREPTOCOCCUS MUTANS GS-5 (연쇄상구균 GS-5의 ag I/II와 gtfD 유전자 클로닝)

  • Jeong, Jin-Woo;Baik, Byeong-Ju;Yang, Yeon-Mi;Seo, Jeong-Ah;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.357-369
    • /
    • 2005
  • Streptococci are Gram-positive, facultative anaerobes and have no catalase activities. Among mutans streptococci containing ${\alpha}-type$ hemolytic activity, S. mutans is a causative agent for dental caries. As well as acid production yielding the demineralization of tooth enamel, adherence and colonization of S. mutans to the teeth are also important for its virulence. These early colonization are accomplished by the bacterial fibrillar protein, Antigen I/II (Ag I/II) and glucosyltransferase (GTF). Therefore, Ag I/II and GTF are reasonable targets for the development of vaccine against S. mutans GS-5. The ag I/II and gtfD genes from S. mutans GS-5 were cloned and sequenced. Sequence analyses showed the nucleotides sequence of cloned genes had high homology to the sequences previously reported. The sequence alignment of 280 nucleotides between the cloned Ag I/II and the available sequence of the corresponding S. mutans GS-5 showed the perfect match. Comparing with the sequence of gtfD from S. mutans UA159, the corresponding nucleotide sequence of S. mutans GS-5 showed some mismatches and the mismatches introduced changes in four residues out of 105 amino acids, yielding four missense mutations.

  • PDF

IN VITRO STUDY ON THE FLUORIDE RELEASE FROM GLASS IONOMER CEMENTS AND A FLUORIDE-CONTAINING RESIN (글라스 아이오노머 시멘트와 불소함유 레진의 불소유리에 관한 연구)

  • Kim, Mi-Kyung;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.399-407
    • /
    • 1998
  • In order to resolve enamel demineralization around orthodontic bracket, fluoride-releasing materials, glass ionomer cements and fluoride-containing resin, were introduced in orthodontic department. There were many studies about their fluoride release, but their results were controversial. The purpose of this study was to clarify the pattern and amounts of fluoride release from glass ionomer cements and a fluoride-containing resin during 70 days in vitro. Disc shaped specimens were prepared and immersed in polyethylene tube containing 2ml distilled deionized water. The daily amounts of the fluoride released from each specimens were measured after experiment 1 day, 3 days, 7 days, 14 days, 42 days and 70 days. They were measured by fluoride-specific electrode combined pH/Ion meter. The following results were as follow, 1. Fluorides released from fluoride-containing resin during 1 day were significantly less than those from glass ionomer cements. 2. On experiment 70 days, mean daily amounts of fluoride released from Miracle-$Mix^{\circledR}$were $3.4{\mu}g/cm^2$, those from Fuji GC $II^{\circledR}$ were $2.7{\mu}g/cm^2$, those from $Orthobond^{\circledR}$ were $2.3{\mu}g/cm^2$, those from Fuji GC $LC^{\circledR}$were $1.4{\mu}g/cm^2$ and those from fluoride-containing resin, $Heliomolar^{\circledR}$, were $0.1{\mu}g/cm^2$. 3. There were no significant differences in daily amounts of fluoride released from between self-curing glass ionomer cements and light-curing glass ionomer cements. Amounts of released fluoride varied among commercially available products. 4. In all experimental materials, amounts of released fluoride decreased rapidly until experimental 3 days and then decreased slowly until 14 days and more slowly until 70 days.

  • PDF

Effect of Sodium Fluoride Varnish and Potassium Iodide on Remineralization Efficacy of Silver Diamine Fluoride (불화나트륨 바니쉬와 요오드화 칼륨이 Silver Diamine Fluoride의 재광화 효과에 미치는 영향)

  • Lee, Kunho;Ahn, Junyong;Kim, Jong Soo;Han, Miran;Lee, Joonhaeng;Shin Jisun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.4
    • /
    • pp.467-475
    • /
    • 2021
  • The purpose of this study was to compare the effect of sodium fluoride(NaF) varnish and potassium iodide(KI) on remineralization efficacy of silver diamine fluoride(SDF) by measuring microhardness and evaluating surface morphology by scanning electron microscope(SEM). Artificial caries lesions were induced on extracted primary molars and vickers microhardness was measured. Specimens were randomly separated into 4 groups for treatment. The specimens in group I were treated with SDF, group II with NaF varnish after SDF, group III with KI after SDF and group IV with distilled water. After 8 days of pH cycling, vickers microhardness was measured and difference before and after treatment was calculated. For SEM, 2 samples were evaluated respectively after enamel polishing, lesion formation and after pH cycling. Group III showed highest increase in microhardness. Group I showed higher increase in microhardness than Group II but without statistical difference. Group IV showed lowest increase in microhardness value among 4 groups. On SEM image, group I, II and III showed smoother and less irregular surface compared to group IV. Amorphous crystal pellicles were observed in group III. In conclusion, SDF, SDF and NaF, SDF and KI groups showed smoother surface and increase in microhardness suggesting the possibility that remineralization effect might take place in oral conditions. In addition, in limited conditions of this study, applying NaF varnish after SDF did not increase the remineralization efficacy of SDF while KI significantly increased the remineralization efficacy of SDF. However, additional study considering various conditions that might affect demineralization and remineralization in clinical situations need to be conducted.