• Title/Summary/Keyword: Emulsion Polymerization

Search Result 238, Processing Time 0.028 seconds

Synthesis of Waterborne Perfluoroacrylic Polyurethane Composite and Its Property (과불소 아크릴 수성 폴리우레탄 복합체의 합성 및 물성)

  • Yoo, Su-Yong;Kim, Jung-Du;Moon, Myung-Jun;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.865-872
    • /
    • 2007
  • The waterborne perfluoroacylic polyurethane composite (WFPUC) series were prepared by the emulsion polymerization (WFPUC-E) and the physical blending (WFPUC-B). WFPUC-E was prepared by polymerizing perfluoroalkyl ethyl acrylate (FA) and waterborne polyurethane (WPU), and WFPUC-B was prepared by blending FA copolymer and WPU. The structures of the synthesized WFPUC were identified by using FT-IR-ATR. The surface and thermal properties of the synthesized WFPUC were investigated by measuring contact angle, surface energy, and TGA. The surface energy of WFPUC-E was lower than that of WFPUC-B. The thermal stability of the WFPUC-B showed better than that of the WFPUC-E.

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang;Moon, Jun-Hyuk;Kim, Young-Kuk;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.347-358
    • /
    • 2011
  • Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.

Effect of Latex Particle Morphology on the Film Properties of Acrylic Coatings (II);Film Forming Behavior of Model Composite Latex (라텍스 입자구조가 필름형성 및 필름물성에 미치는 영향 (II);모델 복합 라텍스 입자의 필름형성 거동)

  • Ju, In-Ho;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.132-139
    • /
    • 2004
  • Film forming behavior of monodispersed model composite latexes with particle size of 190 nm, which consist of n-butyl acrylate as a soft phase monomer and methyl methacrylate as a hard phase monomer with different morphology was examined. Five different types of model latexes were used in this study such as random copolymer particle, soft-core/hard-shell particle, hard-core/soft-shell particle, gradient type particle, and mixed type particle. The film forming behavior was evaluated using pseudo on-line measurements of the cumulative weight loss, the UV transmittance, and the tensile fracture energy. Each stages of film formation I, II were not sensitive to the morphology of model latexes, but stage-ill was largely dependent on the morphology of model latexes. The chain mobility of polymer which composed the shell component was found to dominantly determine the behavior of film forming stage-III.

수성 고분자 - 탄소나노튜브 복합 분산 용액을 이용한 전계 방출 소자의 제작

  • Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.66.2-66.2
    • /
    • 2011
  • A polymer-based multi-walled carbon nanotube (MWCNT) field emission device was fabricated from a composite dispersion of MWCNTs and waterborne polymethyl methacrylate (PMMA). The waterborne PMMA synthesized through the emulsion polymerization method was added to minimize the reagglomeration of dispersed MWCNTs with surfactants in water, and increase the adhesion between the and the substrate. The field emission properties of the fabricated device were optimized by adjusting the density of the emitter and the adhesion between the MWCNTs and the substrate. These were done by controlling the polymer concentration added to the MWCNT dispersion, as well as the amount of spray coating on the substrate. The results confirm the successful fabrication of a polymer-based MWCNT field emission device with a low field of 1.07 $V/{\mu}m$ and a good electric field enhancement factor of 2445. The device was fabricated by adding 0.8 mg/mL of polymer solution to the MWCNT dispersion and applying 20 cycles of spray coating. Application of this same MWCNT/polymer composite solution to a flexible polymer substrate also resulted in the successful fabrication of an electric field emission device with uniform emission and long time stability.

  • PDF

Three Dimensionally Ordered Microstructure of Polycrystalline TiO2 Ceramics with Micro/meso Porosity

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.227-233
    • /
    • 2016
  • In order to make a highly ordered three-dimensional porous structure of titania ceramics, porogen beads of PS [Polystyrene] and PMMA [poly(methylmetacrylate)] were prepared by emulsion polymerization using styrene monomer and methyl methacrylate monomer, respectively. The uniform beads of PS or PMMA latex were closely packed by centrifugation as a porogen template for the infiltration of titanium butoxide solution. The mixed compound of PS or PMMA with titanium butoxide was dried and the dry compacts were calcined at $450^{\circ}C-750^{\circ}C$ according to the firing schedule to prepare micro- and meso- structures of polycrystalline titania with monodispersed porosity. Inorganic frameworks composed of $TiO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $TiO_2$ ceramics. The pulverized particles of the $TiO_2$ ceramic skeleton were characterized using XRD analysis. A monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM with EDX analysis. The 3DOM $TiO_2$ skeleton showed opalescent color tuning according to the direction of light.

Studies on the Destructible Surfactants(1);Synthesis of Cleavable Surfactant with Dioxolane Ring (분해성계면활성제에 관한 연구(제1보);1,3-Dioxlane고리를 갖는 분해성계면활성제의 합성)

  • Ha, J.W.;Jeong, N.H.;Kim, J.H.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.93-99
    • /
    • 1995
  • As the surfactants that were used in micellar reaction, emulsion polymerization and phase-transfer reaction etc. have the problems, the cleavable surfactant that was converted to inactive compound after such as the reaction was synthesized to above 90% yield. And this surfactant and intermediates were separated through thin layer chromatography and column chromatatography and their molecular structures were confirmed from IR. $^{1}H$-NMR and elementary analysis spectra. And its surface-active properties and acid hydrolysis will be serialized in II.

Preparation of Affinity Column Based on ZR4+ Ion forPhosphoproteins Isolation

  • Lee, Seon-Mi;Bae, In-Ae;Park, Jung-Hyen;Kim, Tae-Dong;Choi, Seong-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.279-285
    • /
    • 2009
  • This paper has described about preparation of $Zr^{4+}$ affinity column based on the poly(styrene-co- gly-cidyl methacrylate) prepared by emulsion polymerization of styrene and glycidyl methacrylate in order to isolate phosphopeptide. The $Zr^{4+}$ ions were introduced after the phophonation of an epoxy group on polymeric microspheres. The successful preparation of $Zr^{4+}$-immobilized polymeric microsphere stationary phase was confirmed through Fourier transform infrared spectra, optical microscopy, scanning electron microscopy, X-ray photoelectron spectra and inductively coupled plasma-atomic emission spectrometer. The separation efficiency for $Zr^{4+}$ affinity column prepared by slurry packing was tested to phosphonated casein and dephosphonated casein. The resolution time (min) of the phosphonated casein was higher than that of dephosphated casein for $Zr^{4+}$ affinity polymeric microsphere by liquid chromatography. This $Zr^{4+}$ affinity column can be used for isolation of phosphonated casein from casein using liquid chromatography.

Synthesis of Polystyrene Nanoparticles with Monodisperse Size Distribution and Positive Surface Charge Using Metal Stearates

  • Kim, Mi-Sun;Kim, Seok-Ki;Lee, Jun-Young;Cho, Seung-Hyun;Lee, Ki-Hoon;Kim, Jun-Kyung;Lee, Sang-Soo
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.178-181
    • /
    • 2008
  • Polystyrene (PS) nanospheres with a monodisperse size distribution, positive surface charge and high molecular weight were successfully synthesized using various types of metal stearates in an aqueous NaOH medium. The diameter of the PS nanospheres was controlled from 80 to 450 nm by changing the type of metal stearate. It was also found that controlling the NaOH concentration in solution was important for producing monodisperse PS nanoparticles. The nanospheres prepared with zinc stearate possessed a positive surface charge of 60 to 80 mV, confirming that PS particles were functionalized with metal stearates. It is believed that the metal stearates provide PS particles with not only colloidal stability but also a positive surface charge.

Characteristics Analysis of Highly Elastic Materials according to the Graphite Content and a Simulation Study of Physical Properties Prediction Using a Nonlinear Material Model (열팽창성 그래파이트 함량에 따른 고탄성 도료 소재의 특성 분석 및 비선형 재료모델을 활용한 물성 예측 시뮬레이션 연구)

  • Yu, Seong-Hun;Lee, Jong-Hyuk;Kim, Dae-cheol;Lee, Byung-Su;Sim, Jee-Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.250-260
    • /
    • 2022
  • In this research, a high-elasticity acrylic emulsion binder with core-shell polymerization and self-crosslinking system is mixed with a flame-retardant water-dispersed polyurethane (PUD) binder. In addition, finite element analysis was conducted through virtual engineering software ANSYS by applying three representative nonlinear material models. The most suitable nonlinear material model was selected after the relative comparison between the actual experimental values and the predicted values of the properties derived from simulations. The selected nonlinear material model is intended to be used as a nonlinear material model for computational simulation analysis that simulates the experimental environment of the vibration test (ASTM E1399) and the actual fire safety test (ASTM E1966). When the mass fraction of thermally expandable graphite was 0.7%, the thermal and physical properties were the best. Among the nonlinear material models, the simulation result of the Ogden model showed the closest value to the actual result.

Effect of Multi-functional Group of Acrylate Crosslinker on Properties of Waterborne Polyurethane-acrylate

  • Moon, Seok Kyu;Kim, Eun-jin;Kwon, Yong Rok;Kim, Jung Soo;Kim, Hae Chan;Park, Han Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.100-106
    • /
    • 2022
  • Waterborne polyurethane-acrylate(WPUA) dispersions were prepared by surfactant-free emulsion polymerization in a two-step process. In the first step, polytetrahydrofuran, isophorone diisocyanate, dimethylol proponic acid, and 2-hydroxyethyl methacrylate were used to synthesize a vinyl-terminated polyurethane prepolymer. In the second step, styrene, methyl methacrylate, butyl acrylate, and different multi-functional crosslinkers were copolymerized. 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, and pentaerythritol tetraacrylate were used as the crosslinkers, and their effect on the mechanical and thermal properties of WPUA was investigated. Overall, as the number of functional groups of the cross-linker increased, the gel fraction improved to 79.26%, the particle size increased from 75.9 nm to 148.7 nm, and the tensile strength was improved from 5.86 MPa to 12.40 MPa. In thermal properties, the glass transition temperature and decomposition temperature increased by 9.9℃ and 18℃, respectively. The chemical structures of the WPUA dispersions were characterized by Fourier-transform infrared spectroscopy. The synthesized WPUA has high potential for applications such as coatings, leather coatings, adhesives, and wood finishing.