• Title/Summary/Keyword: Empirical Orthogonal Function

Search Result 70, Processing Time 0.023 seconds

Intrinsic Mode Function and its Orthogonality of the Ensemble Empirical Mode Decomposition Using Orthogonalization Method (직교화 기법을 이용한 앙상블 경험적 모드 분해법의 고유 모드 함수와 모드 직교성)

  • Shon, Sudeok;Ha, Junhong;Pokhrel, Bijaya P.;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • In this paper, the characteristic of intrinsic mode function(IMF) and its orthogonalization of ensemble empirical mode decomposition(EEMD), which is often used in the analysis of the non-linear or non-stationary signal, has been studied. In the decomposition process, the orthogonal IMF of EEMD was obtained by applying the Gram-Schmidt(G-S) orthogonalization method, and was compared with the IMF of orthogonal EMD(OEMD). Two signals for comparison analysis are adopted as the analytical test function and El Centro seismic wave. These target signals were compared by calculating the index of orthogonality(IO) and the spectral energy of the IMF. As a result of the analysis, an IMF with a high IO was obtained by GSO method, and the orthogonal EEMD using white noise was decomposed into orthogonal IMF with energy closer to the original signal than conventional OEMD.

Variability of Vertical Distribution of Volume Scattering Observed in the Shallow Water (천해 체적 산란강도의 수직분포 변동성)

  • 박경주;김은혜;강돈혁;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • Measurements of backscattered intensity were made over a shallow water using 300 ㎑and 1200 ㎑ bottom mounted ADCP (Acoustic Doppler Current Profiler) to determine the temporal variability of vertical distribution of high-frequency volume scattering strength (Sv). The variability of Sv in relatively deep water column(85 m and 113 m was due to the daily vertical migration, probably of larger zooplankton. However it was not found with 1200㎑ data at shallow water column. From the empirical orthogonal function (EOF) analysis using 1200㎑ data, the vertical distribution of the first mode eigenvectors of Sv is characterized by the presence of the maximum values near the bottom of the water.

Short-term Sand Movement Analysis in Hujeong Beach using Empirical Orthogonal Functions (경험고유함수를 이용한 후정해수욕장 단기 모래 이동 분석)

  • Cheon, Se-Hyeon;Suh, Kyung-Duck;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.244-252
    • /
    • 2014
  • EOF (Empirical Orthogonal Function) analysis is applied to investigate the sand movement in Hujeong Beach. For the analysis, the profile data which were observed five times from June 2009 to May 2010 along the 13 baselines were used. To secure the temporal and physical consistency among the 13 profile data, the 13 profile data were combined into one data and using this data the EOF analysis was performed. According to the analysis, the first EOF is related with the mean topography and the second EOF represents the natural variation of sediment migration and the third EOF is related with the along-shore sediment transport arising from storm. The remaining EOFs show no special relation with wave conditions. In conclusion the main factors which are having great effects on Hujeong Beach's sand movement are analyzed as natural variation and along-shore sediment transport owing the wave conditions.

SEASONAL AND INTERANNUAL VARIABILITY OF CHLOROPHYLL A IN OKHOTSK SEA FROM SEAWIFS DATA

  • Tshay, Zhanna R.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.913-916
    • /
    • 2006
  • Spatial distribution, seasonal and interannual variability of chlorophyll a concentration in Okhotsk Sea from SeaWiFS data between 2001 and 2004 were describe. An Empirical Orthogonal Function method was applied for analysis data. The ten modes described about 85% of total variance. Two maxima were defined - more intensive in spring and weaker in autumn. The first mode showed zones with chlorophyll a concentration during maximum bloom. The second mode specified timing of spring bloom in various regions in Okhotsk Sea. Analysis of SeaWiFS data indicated connection between highest chlorophyll a concentration and sea surface temperature limits during spring bloom. Similar relation was not found during fall bloom.

  • PDF

Classification of Climate Zones in South Korea Considering both Air Temperature and Rainfall (기온과 강수특성을 고려한 남한의 기후지역구분)

  • Park, Chang-Yong;Choi, Young-Eun;Moon, Ja-Yeon;Yun, Won-Tae
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.1
    • /
    • pp.1-16
    • /
    • 2009
  • This study aims to classify climate zones using Empirical Orthogonal Function and clustering analyses considering both air temperature and rainfall features in South Korea. When examining climatic characteristics of air temperature and rainfall by seasons, the distribution of air temperature is affected by topography and latitude for all seasons in South Korea. The distribution of rainfall demonstrated that the Yeongdong area, the southern coastal area and Jeju island have higher rainfall while the central area in Gyeongsangbuk-do is the least rainfall area. Clustering analyses of average linkage method and Ward's method was carried out using input variables derived from principal component scores calculated through Empirical Orthogonal Function analysis for air temperature and rainfall. Ward's method showed the best result of classification of climate zones. It was well reflected effects of topography, latitude, sea, the movement of surface pressure systems, and an administrative district.

Climate Prediction by a Hybrid Method with Emphasizing Future Precipitation Change of East Asia

  • Lim, Yae-Ji;Jo, Seong-Il;Lee, Jae-Yong;Oh, Hee-Seok;Kang, Hyun-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1143-1152
    • /
    • 2009
  • A canonical correlation analysis(CCA)-based method is proposed for prediction of future climate change which combines information from ensembles of atmosphere-ocean general circulation models(AOGCMs) and observed climate values. This paper focuses on predictions of future climate on a regional scale which are of potential economic values. The proposed method is obtained by coupling the classical CCA with empirical orthogonal functions(EOF) for dimension reduction. Furthermore, we generate a distribution of climate responses, so that extreme events as well as a general feature such as long tails and unimodality can be revealed through the distribution. Results from real data examples demonstrate the promising empirical properties of the proposed approaches.

Aerosol optical depth prediction based on dimension reduction methods

  • Jungkyun Lee;Yaeji Lim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.521-533
    • /
    • 2024
  • As the concentration of fine dust has recently increased, numerous related studies are being conducted to address this issue. Aerosol optical depth (AOD) is a vital atmospheric parameter for measuring the optical properties of aerosols in the atmosphere, providing crucial information related to fine dust. In this paper, we apply three dimension reduction methods, nonnegative matrix factorization (NMF), empirical orthogonal functions (EOF) analysis and independent component analysis (ICA), to AOD data to analyze the patterns of fine dust in the East Asia region. Through a comparison of three dimension reduction methods, we observe that some patterns are observed in all three method, while some information are only extracted in a specific method. Additionally, we forecast AOD levels based on three methods, and compare the predictive performance of the three methodologies.

Empirical Orthogonal Function Analysis of Seawater Temperature in the Southeastern Hwanghae (東南黃海에서 海水溫度의 EOF 分析)

  • 이흥재;방인권
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.193-202
    • /
    • 1986
  • Spatio-temporal variabilities of seawater temperature at 0 and 30m in the southeastern Hwanghae were studied by variance and empirical orthogonal function(EOF) analysis of long records of temperature between 1967 and 1982. The spatial distribution of monthly mean sea surface temperature has a pattern similar to the long-term annual mean which decreases from south to north. On the contrary, the total variance computed from the annual mean of sea surface temperature(SST) increases from south to north. The variance of SST is found to be two times greater than that at 30m in the study area except coastal area south of Kyunggi Bay. The important variance of temperature seem s to be closely associated with the seasonal change of temperature because the first and second modes of EOF having a seasonal cycle explain 97.6% and 85.2% of variances at 0 and 30m, respectively. There is a large difference in temperature between the northern and southern parts of the study area during winter, while the difference becomes very small during summer. This might reflect that in summer the heat gain of sea surface from the incoming radiation is much more important than the heat loss or the oceanic heat advection. In summer coastal waters south of the Kyunggi Bay and around Mokpo are observed to be colder than offshore waters due to tidal mixing.

  • PDF

Identifying Suspended Particulate Matters in an Urban Coastal System: Significance and Application of Particle Size Analysis

  • Ahn, Jong-Ho
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.167-174
    • /
    • 2012
  • In situ particle size spectra are obtained from two sequent cruises in order to evaluate the physical consequences of suspended particulate matters caused by episodic storm runoff from the Santa Ana River watershed, an urbanized coastal watershed. Suspended particles from various sources including surface runoff, near-bed resuspension, and phytoplankton are identified in empirical orthogonal function (EOF) analysis and an entropy-based parameterization (Shannon entropy). The first EOF mode is associated with high turbidity and fine particles as indicated by the elevated beam attenuation near the Santa Ana River and Newport Bay outlets, and the second EOF mode explains the suspended sediment dispersal and particle coarsening at the near-surface plume. Chlorophyll particles are also distinguished by negative magnitudes of the first EOF mode, which is supported by the relationship between fluorescence and beam attenuation. The integrated observation between the first EOF mode and the Shannon entropy index accentuates the characteristics of two different structures and/or sources of sediment particles; the near-surface plumes are originated from runoff water outflow, while the near-bottom particles are resuspended due to increased wave heights or mobilizing bottom turbidity currents. In a coastal pollution context, these methods may offer useful means of characterizing particle-associated pollutants for purposes of source tracking and environmental interpretation.

Fluctuations of Coastal Water Temperatures Along Korean and Japanese Coasts in the East Sea

  • KANG Yong-Q.;CHOI Seong-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.351-360
    • /
    • 1988
  • Based on historic data of monthly means of sea surface temperatures (SST) for 24 years $(1921\~1944) $ at 23 Korean and Japanese coastal stations in the East Sea (the Japan Sea), we analyzed spatio-temporal characteristics of coastal SST and SST anomalies. The means of SST at Korean coast are higher than those at Japanese coast of the same latitudes, and the annual range of SST at Korean coast are larger than those at Japanese coast. Empirical orthogonal function analysis shows that almost all $(96\%)$ of the SST fluctuations are described by simultaneous seasonal variations. The flurtuations of SST anomalies are small in the Korea Strait and large at the boundaries between the warm and told currents in the basin. The fluctuations of SST anomalies along Korean coast are correlated each other The same is true for SST anomalies along Japanese coast. However, there is only weak correlation between the SST anomalies at Korean coast and those at Japanese coast. Empirical orthogonal function analysis shows that $27\%$ of the coastal SST anomalies in the East Sea are described by simultaneous fluctuations, and $12\%$ of them are described by alternating fluctuations between Korean and Japanese coasts.

  • PDF