DOI QR코드

DOI QR Code

Short-term Sand Movement Analysis in Hujeong Beach using Empirical Orthogonal Functions

경험고유함수를 이용한 후정해수욕장 단기 모래 이동 분석

  • Cheon, Se-Hyeon (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Suh, Kyung-Duck (Department of Civil and Environmental Engineering & Engineering Research Institute, Seoul National University) ;
  • Ahn, Kyungmo (School of Spatial Environmental System Engineering, Handong Global University)
  • 천세현 (서울대학교 건설환경공학부) ;
  • 서경덕 (서울대학교 건설환경공학부) ;
  • 안경모 (한동대학교 공간환경시스템공학부)
  • Received : 2014.06.12
  • Accepted : 2014.08.27
  • Published : 2014.08.30

Abstract

EOF (Empirical Orthogonal Function) analysis is applied to investigate the sand movement in Hujeong Beach. For the analysis, the profile data which were observed five times from June 2009 to May 2010 along the 13 baselines were used. To secure the temporal and physical consistency among the 13 profile data, the 13 profile data were combined into one data and using this data the EOF analysis was performed. According to the analysis, the first EOF is related with the mean topography and the second EOF represents the natural variation of sediment migration and the third EOF is related with the along-shore sediment transport arising from storm. The remaining EOFs show no special relation with wave conditions. In conclusion the main factors which are having great effects on Hujeong Beach's sand movement are analyzed as natural variation and along-shore sediment transport owing the wave conditions.

후정해수욕장의 모래 이동을 분석하기 위해 경험고유함수(Empirical Orthogonal Function; EOF) 분석법을 적용하였다. EOF 분석을 위해 2009년 6월부터 2010년 5월까지 13개 기선에 대해서 총 5회 실시된 후정해수욕장의 단면 관측값이 사용되었다. 13개 단면 분석결과 사이의 시간적, 물리적 일관성을 확보하기 위해 13개 기선 모두를 하나로 통합하고 이를 사용해 EOF 분석을 수행하였다. 분석결과 첫 번째 고유함수는 평균해빈 지형을 나타내었으며 두 번째와 세 번째 고유함수의 경우 해빈의 자연변동성과 파랑에 의해 발생된 횡방향 모래이동을 각각 나타내었다. 네 번째와 다섯 번째 고유함수의 경우 특별한 연관성을 발견할 수 없었다. 결론적으로 후정해수욕장의 모래 이동에 영향을 미치는 요인은 크기 순으로 자연변동성과 파랑에 의한 횡방향 모래이동으로 분석 되었다.

Keywords

References

  1. Aubrey, D. G. 1978. Statistical and dynamical prediction of changes in natural sand beaches. University of California, San Diego.(Ph. D. in Oceanography).
  2. Aubrey, D. G. (1979). Seasonal patterns of onshore/offshore sediment movement. Journal of Geophysical Research: Oceans (1978-2012), 84(C10), 6347-6354. https://doi.org/10.1029/JC084iC10p06347
  3. Berek, E. and Dean, R. (1982). Field investigation of longshore transport distribution. Proceedings of 18th International Conference on Coastal Engineering, ASCE, Cape Town, South Africa, 1, 1620-1639.
  4. Bosma, K. F. and Dalrymple, R. A. (1996). Beach profile analysis around Indian River inlet, Delaware, USA. Proceedings of 25th International Conference on Coastal Engineering, ASCE, Orlando, Florida, United States, 1, 2829-2842.
  5. Cheon, S.-H., Suh, K.-D. and Ahn, K. (2013). Short-term beach change analysis at hu-jeong beach using empirical orthogonal functions. Proceedings of 39th Conference of Korean Society of Civil Engineers, Jeongseon, Korea, 558-562, (in Korean).
  6. Clarke, D. and Eliot, I. (1988). Low-frequency changes of sediment volume on the beachface at warilla beach, new south wales, 1975-1985. Marine geology, 79(3), 189-211. https://doi.org/10.1016/0025-3227(88)90039-4
  7. Clarke, D. J. and Eliot, I. (1982). Description of littoral, alongshore sediment movement from empirical eigen-function analysis. Journal of the Geological Society of Australia, 29(3-4), 327-341. https://doi.org/10.1080/00167618208729217
  8. Dean, R. and Dalrymple, R. (2002). Coastal processes with engineering applications cambridge university press. New York.
  9. Dick, J. E. and Dalrymple, R. A. (1984). Coastal changes at Bethany Beach, Delaware. Proceedings of 19th International Conference on Coastal Engineering, ASCE, Houston, Texas, United States, 1, 1650-1667.
  10. Larson, M., Hanson, H., Kraus, N. C. and Newe, J. (1999). Shortand long-term responses of beach fills determined by eof analysis. Journal of waterway, port, coastal, and ocean engineering, 125(6), 285-293. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:6(285)
  11. Liang, G. and Seymour, R. J. (1991). Complex principal component analysis of wave-like sand motions. Coastal Sediments (1991), ASCE, 2175-2186.
  12. Medina, R., Vidal, C., Losada, M. A. and Roldan, A. J. (1992). Three-mode principal component analysis of bathymetric data, applied to "Playa de Castilla" (Huelva, Spain). Proceedings of 23rd International Conference on Coastal Engineering, ASCE, Venice, Italy, 1, 2265-2278.
  13. Munoz-Perez, J. J., Medina, R. and Tejedor, B. (2001). Evolution of longshore beach contour lines determined by eof method. Scientia Marina, 65(4), 393-402. https://doi.org/10.3989/scimar.2001.65n4393
  14. Pruszak, Z. (1993). The analysis of beach profile changes using dean's method and empirical orthogonal functions. Coastal Engineering, 19(3), 245-261. https://doi.org/10.1016/0378-3839(93)90031-3
  15. Winant, C. D., Inman, D. L. and Nordstrom, C. E. (1975). Description of seasonal beach changes using empirical eigenfunctions. Journal of Geophysical Research, 80(15), 1979-1986. https://doi.org/10.1029/JC080i015p01979