Journal of the Korea Society of Computer and Information
/
v.20
no.10
/
pp.69-76
/
2015
User's selection of music is largely influenced by private tastes as well as emotional states, and it is the unconsciousness projection of user's emotion. Therefore, we think user's emotional states to be music itself. In this paper, we try to grasp user's emotional states from music selected by users at a specific context, and we analyze the correlation between its context and user's emotional state. To get emotional states out of music, the proposed method extracts emotional words as the representative of music from lyrics of user-selected music through morphological analysis, and learns weights of linear classifier for each emotional features of extracted words. Regularities learned by classifier are utilized to calculate predictive weights of virtual music using weights of music chosen by other users in context similar to active user's context. Finally, we propose a method to recommend some pieces of music relative to user's contexts and emotional states. Experimental results shows that the proposed method is more accurate than the traditional collaborative filtering method.
College students experience more cyber bullying than youth and cyber bullying on college students may be more harmful than youth. But many studies of cyber bullying have been conducted in youth, but little has been studied for college students. Therefore, this study investigated the negative effects of college students' cyber bullying experience on cognitive processing ability and emotional states. The social support of friends has a buffering effect that prevents stress and reduces the influence on external damage in stressful situations. But the impact of parental social support is controversial. Traditionally, the social support of parents has been claimed to mitigate the negative effects of external damage. Recently, however, it has been argued that parental social support, without considering the independence and autonomy needs of college students, does not alleviate the negative effects. Therefore, this study examined how the social support of friends and parents moderate the negative impact of cyber bullying. The results show that the more college students experience cyber bullying, the lower their cognitive processing ability and emotional states. And, the higher the social support of friends, the lower the harmful impacts of cyber bullying on cognitive processing ability and emotional states. But, the higher the social support of parents, the higher the harmful impacts of cyber bullying on cognitive processing ability and emotional states.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.6
no.1
/
pp.27-32
/
2006
Verbal communication is the most commonly used mean of communication. A spoken word carries a lot of informations about speakers and their emotional states. In this paper we designed a model to recognize emotional states in a speech, a first phase of two phases in developing a toy machine that recognizes emotional states in a speech. We conducted an experiment to extract and analyse the emotional state of a speaker in relation with speech. To analyse the signal output we referred to three characteristics of sound as vector inputs and they are the followings: frequency, intensity, and period of tones. Also we made use of eight basic emotional parameters: surprise, anger, sadness, expectancy, acceptance, joy, hate, and fear which were portrayed by five selected students. In order to facilitate the differentiation of each spectrum features, we used the wavelet transform analysis. We applied ANFIS (Adaptive Neuro Fuzzy Inference System) in designing an emotion recognition model from a speech. In our findings, inference error was about 10%. The result of our experiment reveals that about 85% of the model applied is effective and reliable.
This paper investigated a method for classifying emotional states by using pulse wave signal. It focused on finding effective features for emotional state classification. The emptional states considered here consisted of interest and neutral. Classification experiments utilized 65 and 60 samples of interest and neutral states respectively. We have investigated 19 features derived from pulse wave signals by using both time domain and frequency domain analysis methods with 2 classifiers of minimum distance (normalized Euclidean distanece) and ${\kappa}$-Nearest Neighbour. The Leave-one-out cross validation was used as an evaluation mehtod. Based on experimental results, the most efficient features were a combination of 4 features consisting of (i) the mean of the first differences of the smoothed pulse rate time series signal, (ii) the mean of absolute values of the second differences of thel normalized interbeat intervals, (iii) the root mean square successive difference, and (iv) the power in high frequency range in normalized unit, which provided 80.8% average accuracy with ${\kappa}$-Nearest Neighbour classifier.
International conference on construction engineering and project management
/
2022.06a
/
pp.1245-1246
/
2022
Walkability is an indicator of how much pedestrians are willing to walk and how well a walking environment is created. As walking can promote pedestrians' mental and physical health, there has been increasing focus on improving walkability in different ways. Thus, plenty of research has been undertaken to measure walkability. When measuring walkability, there are many objective and subjective variables. Subjective variables include a feeling of safety, pleasure, or comfort, which can significantly affect perceived walkability. However, these subjective factors are difficult to measure by making the walkability index more reliant on objective and physical factors. Because many subjective variables are associated with human emotional states, understanding pedestrians' emotional states provides an opportunity to measure the subjective walkability variables more quantitatively. Pedestrians' emotions can be examined through surveys, but there are social and economic difficulties involved when conducting surveys. Recently, an increasing number of studies have employed physiological data to measure pedestrians' stress responses when navigating unpleasant environmental barriers on their walking paths. However, studies investigating the emotional states of pedestrians in the walking environment, including assessing their positive emotions felt, such as pleasure, have rarely been conducted. Using wearable devices, this study examined the various emotional states of pedestrians affected by the walking environment. Specifically, this study aimed to demonstrate the feasibility of monitoring biometric data, such as electrodermal activity (EDA) and heart rate variability (HRV), using wearable devices as an indicator of pedestrians' emotional states-both pleasant-unpleasant and aroused-relaxed states. To this end, various walking environments with different characteristics were set up to collect and analyze the pedestrians' biometric data. Subsequently, the subjects wearing the wearable devices were allowed to walk on the experimental paths as usual. After the experiment, the valence (i.e., pleasant or unpleasant) and arousal (i.e., activated or relaxed) scale of the pedestrians was identified through a bipolar dimension survey. The survey results were compared with many potentially relevant EDA and HRV signal features. The research results revealed the potential for physiological responses to indicate the pedestrians' emotional states, but further investigation is warranted. The research results were expected to provide a method to measure the subjective factors of walkability by measuring emotions and monitoring pedestrians' positive or negative feelings when walking to improve the walking environment. However, due to the lack of samples and other internal and external factors influencing emotions (which need to be studied further), it cannot be comprehensively concluded that the pedestrians' emotional states were affected by the walking environment.
This paper presents two kinds of new approaches, one of which is concerned with recognition of emotional speech such as anger, happiness, normal, sadness, or surprise. The other is concerned with emotion recognition in speech. For the proposed speech recognition system handling human speech with emotional states, total nine kinds of prosodic features were first extracted and then given to prosodic identifier. In evaluation, the recognition results on emotional speech showed that the rates using proposed method increased more greatly than the existing speech recognizer. For recognition of emotion, on the other hands, four kinds of prosodic parameters such as pitch, energy, and their derivatives were proposed, that were then trained by discrete duration continuous hidden Markov models(DDCHMM) for recognition. In this approach, the emotional models were adapted by specific speaker's speech, using maximum a posteriori(MAP) estimation. In evaluation, the recognition results on emotional states showed that the rates on the vocal emotions gradually increased with an increase of adaptation sample number.
In this Paper, we are trying to compare the normal speech with emotional speech -happy, sad, and angry states- through the changes of fundamental frequency. Based on the distribution charts of the normal and emotional speech, there are distinctive cues such as range of distribution, average, maximum, minimum, and so on. On the whole, the range of the fundamental frequency is extended in happy and angry states. On the other hand, sad states make the range relatively lessened. Nevertheless, the ranges of the 10 frequency in sad states are wider than the normal speech. In addition, we can verify that ending boundary tones reflect the information of whole speech.
Kim, Hyun;Choi, Jongdoo;Choi, Jeong Woo;Yeo, Donghoon;Seo, Pukyeong;Her, Seongjin;Kim, Kyung Hwan
Journal of Biomedical Engineering Research
/
v.39
no.3
/
pp.124-133
/
2018
We tried to investigate the changes in cortical activities according to emotional valence states during watching video clips. We examined the neural basis of two emotional states (positive and negative) using spectral power analysis and brain functional connectivity analysis of cortical current density time-series reconstructed from high-density electroencephalograms (EEGs). Fifteen healthy participants viewed a series of thirty-two 2 min emotional video clips. Sixty-four channel EEGs were recorded. Distributed cortical sources were reconstructed using weighted minimum norm estimation. The temporal and spatial characteristics of spectral source powers showing significant differences between positive and negative emotion were examined. Also, correlations between gamma-band activities and affective valence ratings were determined. We observed the changes of cortical current density time-series according to emotional states modulated by video clip. Gamma-band activities showed significant difference between emotional states for thirty seconds at the middle and the latter half of the video clip, mainly in prefrontal area. It was also significantly anti-correlated with the self-ratings of emotional valence. In addition, the gamma-band activities in frontal and temporal areas were strongly phase-synchronized, more strongly for negative emotional states. Cortical activities in frontal and temporal areas showed high spectral power and inter-regional phase synchronization in gamma-band during negative emotional states. It is inferred that the higher amygdala activation induced by negative stimuli resulted in strong emotional effects and caused strong local and global synchronization of neural activities in gamma-band in frontal and temporal areas.
Recently there has been interested in the role of emotion in human computer interaction fields. The present study investigated whether the users emotional state effects on information search pattern for decision making in small screen display. In experiment, to induce specific emotional states(positive and negative emotional state), the participants were asked to listen to music and imagine autobiographic events with different emotional impacts. Subsequently, they performed time limit search tasks with three travel information on small screen display and their search patterns were recorded on real time. The results indicated that a positive emotional state caused more wide and fast Information search pattern in comparison with neutral and negative emotional state. And neutral and negative emotional state caused more cognitive resource to details in comparison with positive emotional state.
Objective: The aim of this study is to compare results of emotion recognition by several algorithms which classify three different emotional states(happiness, neutral, and surprise) using physiological features. Background: Recent emotion recognition studies have tried to detect human emotion by using physiological signals. It is important for emotion recognition to apply on human-computer interaction system for emotion detection. Method: 217 students participated in this experiment. While three kinds of emotional stimuli were presented to participants, ANS responses(EDA, SKT, ECG, RESP, and PPG) as physiological signals were measured in twice first one for 60 seconds as the baseline and 60 to 90 seconds during emotional states. The obtained signals from the session of the baseline and of the emotional states were equally analyzed for 30 seconds. Participants rated their own feelings to emotional stimuli on emotional assessment scale after presentation of emotional stimuli. The emotion classification was analyzed by Linear Discriminant Analysis(LDA, SPSS 15.0), Support Vector Machine (SVM), and Multilayer perceptron(MLP) using difference value which subtracts baseline from emotional state. Results: The emotional stimuli had 96% validity and 5.8 point efficiency on average. There were significant differences of ANS responses among three emotions by statistical analysis. The result of LDA showed that an accuracy of classification in three different emotions was 83.4%. And an accuracy of three emotions classification by SVM was 75.5% and 55.6% by MLP. Conclusion: This study confirmed that the three emotions can be better classified by LDA using various physiological features than SVM and MLP. Further study may need to get this result to get more stability and reliability, as comparing with the accuracy of emotions classification by using other algorithms. Application: This could help get better chances to recognize various human emotions by using physiological signals as well as be applied on human-computer interaction system for recognizing human emotions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.