DOI QR코드

DOI QR Code

Frontal Gamma-band Hypersynchronization in Response to Negative Emotion Elicited by Films

영상에 의해 유발된 부정적 감정 상태에 따른 전두엽 감마대역 신경동기화

  • Kim, Hyun (Department of Biomedical Engineering, College of Health Sciences, Yonsei University) ;
  • Choi, Jongdoo (Department of Biomedical Engineering, College of Health Sciences, Yonsei University) ;
  • Choi, Jeong Woo (Department of Biomedical Engineering, College of Health Sciences, Yonsei University) ;
  • Yeo, Donghoon (Department of Biomedical Engineering, College of Health Sciences, Yonsei University) ;
  • Seo, Pukyeong (Department of Biomedical Engineering, College of Health Sciences, Yonsei University) ;
  • Her, Seongjin (Department of Biomedical Engineering, College of Health Sciences, Yonsei University) ;
  • Kim, Kyung Hwan (Department of Biomedical Engineering, College of Health Sciences, Yonsei University)
  • 김현 (연세대학교 보건과학대학 의공학과) ;
  • 최종두 (연세대학교 보건과학대학 의공학과) ;
  • 최정우 (연세대학교 보건과학대학 의공학과) ;
  • 여동훈 (연세대학교 보건과학대학 의공학과) ;
  • 서부경 (연세대학교 보건과학대학 의공학과) ;
  • 허성진 (연세대학교 보건과학대학 의공학과) ;
  • 김경환 (연세대학교 보건과학대학 의공학과)
  • Received : 2018.03.13
  • Accepted : 2018.05.18
  • Published : 2018.06.30

Abstract

We tried to investigate the changes in cortical activities according to emotional valence states during watching video clips. We examined the neural basis of two emotional states (positive and negative) using spectral power analysis and brain functional connectivity analysis of cortical current density time-series reconstructed from high-density electroencephalograms (EEGs). Fifteen healthy participants viewed a series of thirty-two 2 min emotional video clips. Sixty-four channel EEGs were recorded. Distributed cortical sources were reconstructed using weighted minimum norm estimation. The temporal and spatial characteristics of spectral source powers showing significant differences between positive and negative emotion were examined. Also, correlations between gamma-band activities and affective valence ratings were determined. We observed the changes of cortical current density time-series according to emotional states modulated by video clip. Gamma-band activities showed significant difference between emotional states for thirty seconds at the middle and the latter half of the video clip, mainly in prefrontal area. It was also significantly anti-correlated with the self-ratings of emotional valence. In addition, the gamma-band activities in frontal and temporal areas were strongly phase-synchronized, more strongly for negative emotional states. Cortical activities in frontal and temporal areas showed high spectral power and inter-regional phase synchronization in gamma-band during negative emotional states. It is inferred that the higher amygdala activation induced by negative stimuli resulted in strong emotional effects and caused strong local and global synchronization of neural activities in gamma-band in frontal and temporal areas.

Keywords

References

  1. R. W. Levenson, "Emotion elicitation with neurological patients," Handb. Emot. elicitation assessment, pp. 158-168, 2007.
  2. P. D. MacLEAN, "Psychosomatic disease and the visceral brain; recent developments bearing on the Papez theory of emotion," Psychosom. Med, vol. 11, no. 6, pp. 338-353, 1949. https://doi.org/10.1097/00006842-194911000-00003
  3. N. N. Holland, "Spider-Man? Sure! The neuroscience of suspending disbelief," Interdiscip. Sci. Rev., vol. 33, no. 4, pp. 312-320, 2008. https://doi.org/10.1179/174327908X392870
  4. N. H. Frijda, "Aesthetic Emotions and Reality," Am. Psychol., vol. 44, no. 12, pp. 1546-1547, 1989. https://doi.org/10.1037/0003-066X.44.12.1546
  5. J. J. Gross and R. W. Levenson, "Emotion Elicitation using Films," Cogn. Emot., vol. 9, no. 1, pp. 87-108, 1995. https://doi.org/10.1080/02699939508408966
  6. J. Rottenberg, J. J. Gross, F. H. Wilhelm, S. Najmi, and I. H. Gotlib, "Crying threshold and intensity in major depressive disorder," J. Abnorm. Psychol., vol. 111, no. 2, pp. 302-312, 2002. https://doi.org/10.1037/0021-843X.111.2.302
  7. D. Palomba, M. Sarlo, A. Angrilli, A. Mini, and L. Stegagno, "Cardiac responses associated with affective processing of unpleasant film stimuli," Int. J. Psychophysiol., vol. 36, no. 1, pp. 45-57, 2000. https://doi.org/10.1016/S0167-8760(99)00099-9
  8. D. Nie, X. W. Wang, L. C. Shi, and B. L. Lu, "EEG-based emotion recognition during watching movies," in 2011 5th International IEEE/EMBS Conference on Neural Engineering, NER 2011, 2011, pp. 667-670.
  9. L. Aftanas and S. Golosheykin, "Impact of regular meditation practice on EEG activity at rest and during evoked negative emotions," Int. J. Neurosci., vol. 115, no. 6, pp. 893-909, 2005. https://doi.org/10.1080/00207450590897969
  10. S. Koelstra et al., "DEAP: A database for emotion analysis; Using physiological signals," IEEE Trans. Affect. Comput., vol. 3, no. 1, pp. 18-31, 2012. https://doi.org/10.1109/T-AFFC.2011.15
  11. T. Costa, E. Rognoni, and D. Galati, "EEG phase synchronization during emotional response to positive and negative film stimuli," Neurosci. Lett., vol. 406, no. 3, pp. 159-164, 2006. https://doi.org/10.1016/j.neulet.2006.06.039
  12. Y. Y. Lee and S. Hsieh, "Classifying different emotional states by means of eegbased functional connectivity patterns," PLoS One, vol. 9, no. 4, 2014.
  13. P. R. Goldin, C. A. C. Hutcherson, K. N. Ochsner, G. H. Glover, J. D. E. Gabrieli, and J. J. Gross, "The neural bases of amusement and sadness: A comparison of block contrast and subject-specific emotion intensity regression approaches," Neuroimage, vol. 27, no. 1, pp. 26-36, 2005. https://doi.org/10.1016/j.neuroimage.2005.03.018
  14. F. Eugene et al., "The impact of individual differences on the neural circuitry underlying sadness," Neuroimage, vol. 19, no. 2, pp. 354-364, 2003. https://doi.org/10.1016/S1053-8119(03)00121-6
  15. H. Eryilmaz, D. Van De Ville, S. Schwartz, and P. Vuilleumier, "Impact of transient emotions on functional connectivity during subsequent resting state: A wavelet correlation approach," Neuroimage, vol. 54, no. 3, pp. 2481-2491, 2011. https://doi.org/10.1016/j.neuroimage.2010.10.021
  16. J. A. Russell, "Evidence of convergent validity on the dimensions of affect," J. Pers. Soc. Psychol., vol. 36, no. 10, pp. 1152-1168, 1978. https://doi.org/10.1037/0022-3514.36.10.1152
  17. A. Hanjalic and L. Q. Xu, "Affective video content representation and modeling," IEEE Trans. Multimed, vol. 7, no. 1, pp. 143-154, 2005. https://doi.org/10.1109/TMM.2004.840618
  18. T. Ball et al., "Movement related activity in the high gamma range of the human EEG," Neuroimage, vol. 41, no. 2, pp. 302-310, 2008. https://doi.org/10.1016/j.neuroimage.2008.02.032
  19. T. Harmony et al., "EEG delta activity : an indicator of attention to internal processing during performance of mental tasks," vol. 8760, no. 96, 1996. https://doi.org/10.1016/S0167-8760(96)00053-0
  20. H. Hoagland, D. E. Cameron, M. A. Rubin, and J. J. Tegelberg, "Emotion in man as Tested by the Delta Index of the Electroencephalogram: II. Simultaneous Records from Cortex and from a Region Near the Hypothalamus," J. Gen. Psychol., vol. 19, no. 2, pp. 247-261, 1938. https://doi.org/10.1080/00221309.1938.9711202
  21. R. Grech et al., "Review on solving the inverse problem in EEG source analysis," J. Neuroeng. Rehabil., vol. 5, pp. 1-33, 2008. https://doi.org/10.1186/1743-0003-5-1
  22. F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, and R. M. Leahy, "Brainstorm: A user-friendly application for MEG/EEG analysis," Comput. Intell. Neurosci., vol. 2011, 2011.
  23. A. Klein and J. Hirsch, "Mindboggle: A scatterbrained approach to automate brain labeling," Neuroimage, vol. 24, no. 2, pp. 261-280, 2005. https://doi.org/10.1016/j.neuroimage.2004.09.016
  24. Y. Benjamini and Y. Hochberg, "Controlling the false discovery rate: a practical and powerful approach to multiple testing," Journal of the Royal Statistical Society B, vol. 57, no. 1. pp. 289-300, 1995.
  25. Y. Benajmini and Y. Hochberg, "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing Author (s): Yoav Benjamini and Yosef Hochberg Source : Journal of the Royal Statistical Society. Series B ( Methodological ), Vol. 57, No. 1 Published by :," J. R. Stat. Soc. Ser. B, vol. 57, no. 1, pp. 289-300, 1995.
  26. M. Vinck, R. Oostenveld, M. Van Wingerden, F. Battaglia, and C. M. A. Pennartz, "An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias," Neuroimage, vol. 55, no. 4, pp. 1548-1565, 2011. https://doi.org/10.1016/j.neuroimage.2011.01.055
  27. T. M. Loughin, "A systematic comparison of methods for combining p-values from independent tests," Comput. Stat. Data Anal., vol. 47, no. 3, pp. 467-485, 2004. https://doi.org/10.1016/j.csda.2003.11.020
  28. C. S. Herrmann, M. H. J. Munk, and A. K. Engel, "Cognitive functions of gamma-band activity: Memory match and utilization," Trends in Cognitive Sciences, vol. 8, no. 8. pp. 347-355, 2004. https://doi.org/10.1016/j.tics.2004.06.006
  29. E. Basar, C. Basar-Eroglu, S. Karakas, and M. Schurmann, "Gamma, alpha, delta, and theta oscillations govern cognitive processes," Int. J. Psychophysiol., vol. 39, no. 2-3, pp. 241-248, 2000. https://doi.org/10.1016/S0167-8760(00)00145-8
  30. S. Yuval-Greenberg, O. Tomer, A. S. Keren, I. Nelken, and L. Y. Deouell, "Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades," Neuron, vol. 58, no. 3, pp. 429-441, 2008. https://doi.org/10.1016/j.neuron.2008.03.027
  31. N. Martini et al., "The dynamics of EEG gamma responses to unpleasant visual stimuli: From local activity to functional connectivity," Neuroimage, vol. 60, no. 2, pp. 922-932, 2012. https://doi.org/10.1016/j.neuroimage.2012.01.060
  32. M. Garcia-Garcia, J. Yordanova, V. Kolev, J. Dominguez-Borras, and C. Escera, "Tuning the brain for novelty detection under emotional threat: The role of increasing gamma phase-synchronization," Neuroimage, vol. 49, no. 1, pp. 1038-1044, 2010. https://doi.org/10.1016/j.neuroimage.2009.07.059
  33. H. Oya, H. Kawasaki, M. a Howard, and R. Adolphs, "Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli.," J. Neurosci., vol. 22, no. 21, pp. 9502-9512, 2002. https://doi.org/10.1523/JNEUROSCI.22-21-09502.2002
  34. A. Etkin, T. Egner, and R. Kalisch, "Emotional processing in anterior cingulate and medial prefrontal cortex," Trends in Cognitive Sciences, vol. 15, no. 2. pp. 85-93, 2011. https://doi.org/10.1016/j.tics.2010.11.004
  35. K. L. Phan, T. Wager, S. F. Taylor, and I. Liberzon, "Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI," Neuroimage, vol. 16, no. 2, pp. 331-348, 2002. https://doi.org/10.1006/nimg.2002.1087
  36. J. B. Nitschke, I. Sarinopoulos, K. L. MacKiewicz, H. S. Schaefer, and R. J. Davidson, "Functional neuroanatomy of aversion and its anticipation," Neuroimage, vol. 29, no. 1, pp. 106-116, 2006. https://doi.org/10.1016/j.neuroimage.2005.06.068
  37. M. P. Paulus and M. B. Stein, "An Insular View of Anxiety," Biological Psychiatry, vol. 60, no. 4. pp. 383-387, 2006. https://doi.org/10.1016/j.biopsych.2006.03.042
  38. A. Caria, R. Sitaram, R. Veit, C. Begliomini, and N. Birbaumer, "Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study," Biol. Psychiatry, vol. 68, no. 5, pp. 425-432, 2010. https://doi.org/10.1016/j.biopsych.2010.04.020
  39. J. T. Cacioppo, W. L. Gardner, and G. G. Berntson, "The affect system has parallel and integrative processing components: Form follows function," J. Pers. Soc. Psychol., vol. 76, no. 5, pp. 839-855, 1999. https://doi.org/10.1037/0022-3514.76.5.839
  40. L. Carretie, F. Mercado, M. Tapia, and J. A. Hinojosa, "Emotion, attention, and the 'negativity bias', studied through event-related potentials," Int. J. Psychophysiol., vol. 41, no. 1, pp. 75-85, 2001. https://doi.org/10.1016/S0167-8760(00)00195-1
  41. N. K. Smith, J. T. Cacioppo, J. T. Larsen, and T. L. Chartrand, "May I have your attention, please: Electrocortical responses to positive and negative stimuli," Neuropsychologia, vol. 41, no. 2, pp. 171-183, 2003. https://doi.org/10.1016/S0028-3932(02)00147-1
  42. A. J. Pegna, T. Landis, and A. Khateb, "Electrophysiological evidence for early non-conscious processing of fearful facial expressions," Int. J. Psychophysiol., vol. 70, no. 2, pp. 127-136, 2008. https://doi.org/10.1016/j.ijpsycho.2008.08.007
  43. M. Ma, Y. Li, Z. Xu, Y. Tang, and J. Wang, "Small-world network organization of functional connectivity of EEG gamma oscillation during emotion-related processing," 2012 5th Int. Conf. Biomed. Eng. Informatics, BMEI 2012, no. Bmei, pp. 597-600, 2012.
  44. J. K. Olofsson, S. Nordin, H. Sequeira, and J. Polich, "Affective picture processing: An integrative review of ERP findings," Biological Psychology, vol. 77, no. 3. pp. 247-265, 2008. https://doi.org/10.1016/j.biopsycho.2007.11.006
  45. L. Pessoa, "On the relationship between emotion and cognition," Nature Reviews Neuroscience, vol. 9, no. 2. pp. 148-158, 2008. https://doi.org/10.1038/nrn2317
  46. N. Jatupaiboon, S. Pan-Ngum, and P. Israsena, "Real-time EEG-based happiness detection system," Sci. World J., vol. 2013, 2013.