• Title/Summary/Keyword: Emotion machine

Search Result 175, Processing Time 0.025 seconds

Development of Artificial Intelligence Simulator of Seven Ordinary Poker Game (7포커 인공지능 시뮬레이터 구현)

  • Hur, Jong-Moon;Won, Jae-Yeon;Cho, Jae-hee;Rho, Young-J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.277-283
    • /
    • 2018
  • Some innovative researchers have had a dream of self-thinking intelligent computer. Alphago, at last, showed its possibility. With it, most computer engineers including even students can learn easily how to do it. As the interest to the deep learning has been growing, people's expectation is also naturally growing. In this research, we tried to enhance the game ability of a 7-poker system by applying machine learning techniques. In addition, we also tried to apply emotion analysis of a player to trace ones emotional changes. Methods and outcomes are to be explained in this paper.

Development of an oneM2M-compliant IoT Platform for Wearable Data Collection

  • Ahn, Il Yeup;Sung, Nak-Myoung;Lim, Jae-Hyun;Seo, Jeongwook;Yun, Il Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2019
  • Internet of Things (IoT) is commonly referred to as a future internet technology to provide advanced services by interconnecting physical and virtual things, collecting and using many data from them. The IoT platform is a server platform with a common architecture to collect and share the data independent of the IoT devices and services. Recently, oneM2M, the global standards initiative for Machine-to-Machine (M2M) communications and the IoT announced the availability of oneM2M Release 2 specifications. Accordingly, this paper presents a new oneM2M-compliant IoT platform called Mobius 2.0 and proposes its application to collect the biosignal data from wearable IoT devices for emotion recognition. Experimental results show that we can collect various biosignal data seamlessly and extract meaningful features from the biosignal data to recognize two emotions of joy and sadness.

An Empirical Comparison of Machine Learning Models for Classifying Emotions in Korean Twitter (한국어 트위터의 감정 분류를 위한 기계학습의 실증적 비교)

  • Lim, Joa-Sang;Kim, Jin-Man
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.232-239
    • /
    • 2014
  • As online texts have been rapidly growing, their automatic classification gains more interest with machine learning methods. Nevertheless, comparatively few research could be found, aiming for Korean texts. Evaluating them with statistical methods are also rare. This study took a sample of tweets and used machine learning methods to classify emotions with features of morphemes and n-grams. As a result, about 76% of emotions contained in tweets was correctly classified. Of the two methods compared in this study, Support Vector Machines were found more accurate than Na$\ddot{i}$ve Bayes. The linear model of SVM was not inferior to the non-linear one. Morphological features did not contribute to accuracy more than did the n-grams.

A Case Study on the Application of Plant Classification Learning for 4th Grade Elementary School Using Machine Learning in Online Learning (온라인 학습에서 머신러닝을 활용한 초등 4학년 식물 분류 학습의 적용 사례 연구)

  • Shin, Won-Sub;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.1
    • /
    • pp.66-80
    • /
    • 2021
  • This study is a case study that applies plant classification learning using machine learning to fourth graders in elementary school in online learning situations. In this study, a plant classification learning education program associated with 2015 revision science curriculum was developed by applying the Artificial Intelligence biological classification teaching Learning model. The study participants were 31 fourth graders who agreed to participate voluntarily. Plant classification learning using machine learning was applied six hours for three weeks. The results of this study are as follows. First, as a result of image analysis on artificial intelligence, participants were mainly aware of artificial intelligence as mechanical (27%), human (23%) and household goods (23%). Second, an artificial intelligence recognition survey by semantic discrimination found that artificial intelligence was recognized as smart, good, accurate, new, interesting, necessary, and diverse. Third, there was a difference between men and women in perception and emotion of artificial intelligence, and there was no difference in perception of the ability of artificial intelligence. Fourth, plant classification learning using machine learning in this study influenced changes in artificial intelligence perception. Fifth, plant classification learning using machine learning in this study had a positive effect on reasoning ability.

Emotion Classification of User's Utterance for a Dialogue System (대화 시스템을 위한 사용자 발화 문장의 감정 분류)

  • Kang, Sang-Woo;Park, Hong-Min;Seo, Jung-Yun
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.4
    • /
    • pp.459-480
    • /
    • 2010
  • A dialogue system includes various morphological analyses for recognizing a user's intention from the user's utterances. However, a user can represent various intentions via emotional states in addition to morphological expressions. Thus, a user's emotion recognition can analyze a user's intention in various manners. This paper presents a new method to automatically recognize a user's emotion for a dialogue system. For general emotions, we define nine categories using a psychological approach. For an optimal feature set, we organize a combination of sentential, a priori, and context features. Then, we employ a support vector machine (SVM) that has been widely used in various learning tasks to automatically classify a user's emotions. The experiment results show that our method has a 62.8% F-measure, 15% higher than the reference system.

  • PDF

On the Implementation of a Facial Animation Using the Emotional Expression Techniques (FAES : 감성 표현 기법을 이용한 얼굴 애니메이션 구현)

  • Kim Sang-Kil;Min Yong-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.2
    • /
    • pp.147-155
    • /
    • 2005
  • In this paper, we present a FAES(a Facial Animation with Emotion and Speech) system for speech-driven face animation with emotions. We animate face cartoons not only from input speech, but also based on emotions derived from speech signal. And also our system can ensure smooth transitions and exact representation in animation. To do this, after collecting the training data, we have made the database using SVM(Support Vector Machine) to recognize four different categories of emotions: neutral, dislike, fear and surprise. So that, we can make the system for speech-driven animation with emotions. Also, we trained on Korean young person and focused on only Korean emotional face expressions. Experimental results of our system demonstrate that more emotional areas expanded and the accuracies of the emotional recognition and the continuous speech recognition are respectively increased 7% and 5% more compared with the previous method.

  • PDF

Hi, KIA! Classifying Emotional States from Wake-up Words Using Machine Learning (Hi, KIA! 기계 학습을 이용한 기동어 기반 감성 분류)

  • Kim, Taesu;Kim, Yeongwoo;Kim, Keunhyeong;Kim, Chul Min;Jun, Hyung Seok;Suk, Hyeon-Jeong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.1
    • /
    • pp.91-104
    • /
    • 2021
  • This study explored users' emotional states identified from the wake-up words -"Hi, KIA!"- using a machine learning algorithm considering the user interface of passenger cars' voice. We targeted four emotional states, namely, excited, angry, desperate, and neutral, and created a total of 12 emotional scenarios in the context of car driving. Nine college students participated and recorded sentences as guided in the visualized scenario. The wake-up words were extracted from whole sentences, resulting in two data sets. We used the soundgen package and svmRadial method of caret package in open source-based R code to collect acoustic features of the recorded voices and performed machine learning-based analysis to determine the predictability of the modeled algorithm. We compared the accuracy of wake-up words (60.19%: 22%~81%) with that of whole sentences (41.51%) for all nine participants in relation to the four emotional categories. Accuracy and sensitivity performance of individual differences were noticeable, while the selected features were relatively constant. This study provides empirical evidence regarding the potential application of the wake-up words in the practice of emotion-driven user experience in communication between users and the artificial intelligence system.

A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm (기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구)

  • Lee, Hyunju;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.27-36
    • /
    • 2019
  • In this study, experiments on the improvement of the emotion classification, analysis and accuracy of EEG data were proceeded, which applied DEAP (a Database for Emotion Analysis using Physiological signals) dataset. In the experiment, total 32 of EEG channel data measured from 32 of subjects were applied. In pre-processing step, 256Hz sampling tasks of the EEG data were conducted, each wave range of the frequency (Hz); Theta, Slow-alpha, Alpha, Beta and Gamma were then extracted by using Finite Impulse Response Filter. After the extracted data were classified through Time-frequency transform, the data were purified through Independent Component Analysis to delete artifacts. The purified data were converted into CSV file format in order to conduct experiments of Machine learning algorithm and Arousal-Valence plane was used in the criteria of the emotion classification. The emotions were categorized into three-sections; 'Positive', 'Negative' and 'Neutral' meaning the tranquil (neutral) emotional condition. Data of 'Neutral' condition were classified by using Cz(Central zero) channel configured as Reference channel. To enhance the accuracy ratio, the experiment was performed by applying the attributes selected by ASC(Attribute Selected Classifier). In "Arousal" sector, the accuracy of this study's experiments was higher at "32.48%" than Koelstra's results. And the result of ASC showed higher accuracy at "8.13%" compare to the Liu's results in "Valence". In the experiment of Random Forest Classifier adapting ASC to improve accuracy, the higher accuracy rate at "2.68%" was confirmed than Total mean as the criterion compare to the existing researches.

Posture features and emotion predictive models for affective postures recognition (감정 자세 인식을 위한 자세특징과 감정예측 모델)

  • Kim, Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.83-94
    • /
    • 2011
  • Main researching issue in affective computing is to give a machine the ability to recognize the emotion of a person and to react it properly. Efforts in that direction have mainly focused on facial and oral cues to get emotions. Postures have been recently considered as well. This paper aims to discriminate emotions posture by identifying and measuring the saliency of posture features that play a role in affective expression. To do so, affective postures from human subjects are first collected using a motion capture system, then emotional features in posture are described with spatial ones. Through standard statistical techniques, we verified that there is a statistically significant correlation between the emotion intended by the acting subjects, and the emotion perceived by the observers. Discriminant Analysis are used to build affective posture predictive models and to measure the saliency of the proposed set of posture features in discriminating between 6 basic emotional states. The evaluation of proposed features and models are performed using a correlation between actor-observer's postures set. Quantitative experimental results show that proposed set of features discriminates well between emotions, and also that built predictive models perform well.

Emotion Recognition Based on Facial Expression by using Context-Sensitive Bayesian Classifier (상황에 민감한 베이지안 분류기를 이용한 얼굴 표정 기반의 감정 인식)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.653-662
    • /
    • 2006
  • In ubiquitous computing that is to build computing environments to provide proper services according to user's context, human being's emotion recognition based on facial expression is used as essential means of HCI in order to make man-machine interaction more efficient and to do user's context-awareness. This paper addresses a problem of rigidly basic emotion recognition in context-sensitive facial expressions through a new Bayesian classifier. The task for emotion recognition of facial expressions consists of two steps, where the extraction step of facial feature is based on a color-histogram method and the classification step employs a new Bayesian teaming algorithm in performing efficient training and test. New context-sensitive Bayesian learning algorithm of EADF(Extended Assumed-Density Filtering) is proposed to recognize more exact emotions as it utilizes different classifier complexities for different contexts. Experimental results show an expression classification accuracy of over 91% on the test database and achieve the error rate of 10.6% by modeling facial expression as hidden context.