• 제목/요약/키워드: Emotion Prediction

검색결과 81건 처리시간 0.023초

Emotion prediction neural network to understand how emotion is predicted by using heart rate variability measurements

  • Park, Sung Soo;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권7호
    • /
    • pp.75-82
    • /
    • 2017
  • Correct prediction of emotion is essential for developing advanced health devices. For this purpose, neural network has been successfully used. However, interpretation of how a certain emotion is predicted through the emotion prediction neural network is very tough. When interpreting mechanism about how emotion is predicted by using the emotion prediction neural network can be developed, such mechanism can be effectively embedded into highly advanced health-care devices. In this sense, this study proposes a novel approach to interpreting how the emotion prediction neural network yields emotion. Our proposed mechanism is based on HRV (heart rate variability) measurements, which is based on calculating physiological data out of ECG (electrocardiogram) measurements. Experiment dataset with 23 qualified participants were used to obtain the seven HRV measurement such as Mean RR, SDNN, RMSSD, VLF, LF, HF, LF/HF. Then emotion prediction neural network was modelled by using the HRV dataset. By applying the proposed mechanism, a set of explicit mathematical functions could be derived, which are clearly and explicitly interpretable. The proposed mechanism was compared with conventional neural network to show validity.

직물의 시각적 질감특성과 물리적 색채성질에 의한 색채감성요인 예측모델 (Prediction Models for Fabric Color Emotion Factors by Visual Texture Characteristics and Physical Color Properties)

  • 이안례;이은주
    • 한국의류학회지
    • /
    • 제34권9호
    • /
    • pp.1567-1580
    • /
    • 2010
  • This study investigates the effects of visual texture on color emotion and establishes prediction models for color emotion by both physical color properties and visual texture characteristics. A variety of fabrics including silk, cotton, and flax were colored by digital textile printing according to chromatic hue and tone combinations that are evaluated in terms of color emotion. Subjective visual texture ratings are also obtained for gray-colored same fabrics to those used in color emotion tests. As a result, fabric clusters by visual texture factors showed significant differences in color emotion factors that are primarily affected by physical color properties. Finally prediction models for color emotion factors by both physical color properties and visual texture clusters were established, which has a potential to be used to explain color emotion according to the visual texture characteristics of fabrics.

직물의 시각적 질감 특성과 물리적 색채 성질에 의한 색채감성요인 예측모델 (Prediction Models for Color Emotion Factors by Visual Texture and Physical Color Properties of Printed Fabrics)

  • 이안례;이은주
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2009년도 추계학술대회
    • /
    • pp.54-57
    • /
    • 2009
  • This study was aimed to investigate the effects of visual texture on color emotion and to establish prediction models for color emotion by both physical color properties and visual texture characteristics. A variety of fabrics were printed by digital printer according to hue and tone combinations. Subjective sensation was evaluated in terms of visual texture for fabrics printed in gray whereas color emotion for those in chromatically printed. As results, fabric clusters by visual texture showed significant differences in color emotion factors and the differences were clearer for grayish tone fabrics. Prediction models for color emotion factors by both physical color properties and visual texture clusters were proposed as for all fabrics and grayish ones, respectively.

  • PDF

심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구 (Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV))

  • 박성수;이건창
    • 디지털융복합연구
    • /
    • 제17권1호
    • /
    • pp.239-247
    • /
    • 2019
  • 감정을 정확히 예측하는 것은 환자중심의 의료디바이스 개발 및 감성관련 산업에서 매우 중요한 이슈이다. 감정예측에 관한 많은 연구 중 감정 예측에 심박 변동성과 뉴로-퍼지 접근법을 적용한 연구는 없다. 본 연구는 HRV를 이용한 ANFEP(Adaptive Neuro Fuzzy system for Emotion Prediction)을 제안한다. ANFEP의 핵심 기능은 인공 신경망과 퍼지시스템을 통합해 예측 모델을 학습하는 ANFIS(Adaptive Neuro-Fuzzy Inference System)에 기반한다. 제안 모형의 검증을 위해 50명의 실험자를 대상으로 청각자극으로 감정을 유발하고, 심박변이도를 구하여 ANFEP 모형에 입력하였다. STDRR과 RMSSD를 입력으로 하고 입력변수 당 2개의 소속함수로 하는 ANFEP모형이 가장 좋은 결과를 나타났다. 제안한 감정예측 모형을 선형회귀 분석, 서포트 벡터 회귀, 인공신경망, 랜덤 포레스트와 비교한 결과 본 제안모형이 가장 우수한 성능을 보였다. 연구 결과는 보다 적은 입력으로 신뢰성 높은 감정인식이 가능함을 입증했고, 이를 활용해 보다 정확하고 신뢰성 높은 감정인식 시스템 개발에 대한 연구가 필요하다.

생물분류탐구과정에서 호르몬 변화를 이용한 부정감성예측모델 개발 (Development of a Negative Emotion Prediction Model by Cortisol-Hormonal Change During the Biological Classification)

  • 박진선;이일선;이준기;권용주
    • 과학교육연구지
    • /
    • 제34권2호
    • /
    • pp.185-192
    • /
    • 2010
  • 이 연구의 목적은 생물분류탐구과정에서 나타나는 부정감성을 호르몬 변화로 예측할 수 있는 부정감성 예측모델을 개발하는 것이다. 이를 위해 통합적인 과학 탐구가 가능하도록 깃털 분류 탐구 활동을 개발하였다. 연구대상은 호르몬 변화 측정에 문제가 없는 서울, 안산, 청주 소재 중학교 2학년 47명(남 18, 여 29)으로 하였다. 피험자들은 개인별로 깃털 분류 탐구 활동을 수행하였다. 깃털 분류 탐구 활동 전과 후에 형용사 이모티콘 척도법을 이용하여 부정감성 검사를 하였고, 타액 시료를 채취하여 코르티솔 호르몬 변화를 분석하였다. 연구결과 부정감성 변화량과 타액 코르티솔 변화량 사이에서 유의미한 정적 상관관계(R=0.39, P<0.001)가 나타났으며, 회귀분석을 이용하여 생물분류탐구에서 나타나는 타액 코르티솔 변화량을 이용한 부정감성 예측모델을 개발하였다.

  • PDF

얼굴 감정을 이용한 시청자 감정 패턴 분석 및 흥미도 예측 연구 (A Study on Sentiment Pattern Analysis of Video Viewers and Predicting Interest in Video using Facial Emotion Recognition)

  • 조인구;공연우;전소이;조서영;이도훈
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.215-220
    • /
    • 2022
  • Emotion recognition is one of the most important and challenging areas of computer vision. Nowadays, many studies on emotion recognition were conducted and the performance of models is also improving. but, more research is needed on emotion recognition and sentiment analysis of video viewers. In this paper, we propose an emotion analysis system the includes a sentiment analysis model and an interest prediction model. We analyzed the emotional patterns of people watching popular and unpopular videos and predicted the level of interest using the emotion analysis system. Experimental results showed that certain emotions were strongly related to the popularity of videos and the interest prediction model had high accuracy in predicting the level of interest.

문단 분석을 통한 문서 내의 감정 예측 (Emotion Prediction of Document using Paragraph Analysis)

  • 김진수
    • 디지털융복합연구
    • /
    • 제12권12호
    • /
    • pp.249-255
    • /
    • 2014
  • 최근 트위터, 페이스북 등과 같은 소셜 네트워크 서비스(Social Network Service, SNS)의 확산과 더불어 정보의 생성 및 공유가 활발히 이루어지고 있다. 이러한 SNS 매체들을 통해 생산하는 많은 데이터를 활용하기 위해 축적된 데이터로부터 의미 있는 정보를 추출해 내는 기술의 필요성이 대두되고 있으며, 데이터 마이닝 기법을 이용하여 의미있는 지식을 찾아낸다. 특히, 다양한 형태의 방대한 자료들로부터 표출되는 의견, 정책, 성향, 감정 등 대중의 집단지성에 나타난 일반적인 감정분석이 활용되고 있다. 본 논문에서는 대중들이 SNS를 통해 작성한 사용자들의 짧은 문장에 함축된 단어와 단어들 간의 연관성을 이용하여 문장 내 감정 상태를 예측하고 사용자의 감정에 따른 적절한 답변이나 추출한 감정과 유사한 트윗글이나 영화 등을 추천하는데 사용될 수 있는 방법을 제안한다.

사용자 감정 예측을 통한 상황인지 추천시스템의 개선 (Improvement of a Context-aware Recommender System through User's Emotional State Prediction)

  • 안현철
    • Journal of Information Technology Applications and Management
    • /
    • 제21권4호
    • /
    • pp.203-223
    • /
    • 2014
  • This study proposes a novel context-aware recommender system, which is designed to recommend the items according to the customer's responses to the previously recommended item. In specific, our proposed system predicts the user's emotional state from his or her responses (such as facial expressions and movements) to the previous recommended item, and then it recommends the items that are similar to the previous one when his or her emotional state is estimated as positive. If the customer's emotional state on the previously recommended item is regarded as negative, the system recommends the items that have characteristics opposite to the previous item. Our proposed system consists of two sub modules-(1) emotion prediction module, and (2) responsive recommendation module. Emotion prediction module contains the emotion prediction model that predicts a customer's arousal level-a physiological and psychological state of being awake or reactive to stimuli-using the customer's reaction data including facial expressions and body movements, which can be measured using Microsoft's Kinect Sensor. Responsive recommendation module generates a recommendation list by using the results from the first module-emotion prediction module. If a customer shows a high level of arousal on the previously recommended item, the module recommends the items that are most similar to the previous item. Otherwise, it recommends the items that are most dissimilar to the previous one. In order to validate the performance and usefulness of the proposed recommender system, we conducted empirical validation. In total, 30 undergraduate students participated in the experiment. We used 100 trailers of Korean movies that had been released from 2009 to 2012 as the items for recommendation. For the experiment, we manually constructed Korean movie trailer DB which contains the fields such as release date, genre, director, writer, and actors. In order to check if the recommendation using customers' responses outperforms the recommendation using their demographic information, we compared them. The performance of the recommendation was measured using two metrics-satisfaction and arousal levels. Experimental results showed that the recommendation using customers' responses (i.e. our proposed system) outperformed the recommendation using their demographic information with statistical significance.

모듈형 베이지안 네트워크 기반 대중 감성 예측 시스템 (Group Emotion Prediction System based on Modular Bayesian Networks)

  • 최슬기;조성배
    • 정보과학회 논문지
    • /
    • 제44권11호
    • /
    • pp.1149-1155
    • /
    • 2017
  • 최근 통신 기술의 발달로 공간 내 환경 자극을 나타내는 다양한 센서 데이터 수집이 가능해졌다. 베이지안 네트워크는 추론 근거를 확률적으로 고려함으로써 센서 데이터의 불확실하고 불완전한 특성을 보완할 수 있다. 본 논문은 환경 자극의 심리적 영향력을 고려하여 설계된 모듈형 베이지안 네트워크 기반 대중 감성 예측 시스템을 제안한다. 또한 단일 베이지안 네트워크를 모듈화하여 공간 내 환경 자극 변동의 유연한 대응 및 효율적 추론을 수행하였다. 시스템의 성능 검증을 위해 유치원 공간에서 수집된 조도, 음량, 온도, 습도, 색 온도, 음향, 향기, 대중 감성 데이터를 기반으로 대중 감성을 예측하였다. 실험 결과, 제안하는 방법의 예측 정확도는 85%로 여타 분류 기법보다 높은 성능을 나타내었다. 정량적, 정성적 분석을 통해 대중 감성 예측을 위한 확률 기반 방법론의 가능성 및 한계를 분석하였다.

빅데이터 분석을 이용한 문단 내의 감정 예측 (Emotion Prediction of Paragraph using Big Data Analysis)

  • 김진수
    • 디지털융복합연구
    • /
    • 제14권11호
    • /
    • pp.267-273
    • /
    • 2016
  • 모바일의 확산과 더불어 정형화된 자료뿐만 아니라 다양한 형태의 비정형화된 자료로부터 정보가 생성되고 정보 전달 및 공유가 활발히 이루어지고 있다. 최근에는 다양한 SNS 매체들로부터 생산 및 배포되는 많은 자료들 중에서 유의미한 정보를 추출하는 기술로 빅데이터 기술을 많이 사용하며, 빅데이터 분석 기법 중 하나인 데이터 마이닝 기법을 사용한다. 특히, SNS로부터 수집된 방대하고 다양한 자료들을 이용하여 대중의 집단지성에 표출된 일반적인 감정을 분석하여 다양한 분야에 활용한다. 본 논문에서는 SNS를 통해 작성된 짧은 문단 내 함축된 키워드와 키워드들 간의 연관성을 이용하여 문단에 나타난 감정을 예측하고 사용자별 감정에 따른 적절한 답변이나 예측된 감정과 유사한 상품이나 영화 등 다양한 추천시스템에 사용될 수 있도록 형태소 분석과 변형된 n-gram방법을 혼합하여 효율적인 감정 예측 시스템을 제안한다. 제안된 시스템은 평균 82.25%의 재현율을 보여 기존의 시스템에 비해 더욱 향상된 성능을 보여 주었고, 형태소분석을 통해 의미 있는 키워드 추출에 도움이 될 것으로 기대한다.