• Title/Summary/Keyword: Emitting

Search Result 3,874, Processing Time 0.031 seconds

A Sutdy on Organic Emission Device of Chitosan Used (키토산을 이용한 유기 발광 소자에 관한 연구)

  • Jung, Ki-Taek;Kang, Soo-Jung;Kim, Nam-Ki;Roh, Seung-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1062-1065
    • /
    • 2004
  • The importance of display is becoming increasingly important due to the development of information and industry where it leads to diverse and abundant information in today's society. The demand and application range for FPD(Flat Panel Display), specifically represented by LCD(Liquid Crystal Display) and PDP(Plasma Display Panel), have been rapidly growing for its outstanding performance and convenience amongst many other forms of display. The current focus has been on OLED(Organic Light Emitting Diode) in the mobile form, which has just entered into mass production amid the different types of FPD. Many studies are being conducted in regards to device, vacuum evaporation, encapsulation, and drive circuits with the development of device as a matter of the utmost concern. This study develops a new type of light-emitting materials by synthesizing medical polymer organic chitosan and phosphor material CuS. Chitosan itself satisfies the Pool-Frenkel Effect, an I-V specific curve, with a thin film under $20{mu}m$, and demonstrates production possibility for a living body sensors solely with the thin film. Furthermore, it enables production possibility for EML of organic EL device(Emitting Layer) with liquid Green light emitting and Blue light emitting as a result of synthesis with phosphor material.

  • PDF

Effect of light-emitting diode (LED) on in vitro shoot growth and rooting in teak (Tectona grandis L.) (티크의 기내 줄기 생장 및 발근에 미치는 LED (light-emitting diode) 효과)

  • Lee, Na-Nyum;Kim, Ji-Ah;Kim, Yong-Wook
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.291-296
    • /
    • 2019
  • This study was conducted to determine the effect of a light-emitting diode (LED) on in vitro shoot growth and rooting in teak (Tectona grandis L.). In the experiments with apical bud explants, the greatest shoot elongation (3.2 cm) occurred when they were cultured on DKW medium under 50% blue and 50% red LED mixture (BR), whereas no differences in growth were observed in different light sources (florescent light [F] or BR) or media (MS or DKW). The highest number of shoot multiplication (2.4/explant) or elongation (4.94 cm) was achieved with 0.5 or 1.0 mg/L 6-Benzyladenine (BA) treatment under BR. In addition, the best rooting rate (93.8%) or root length (1.3 cm) was recorded with 0.5 mg/L indole-3-butyric acid (IBA) treatment under BR, and the highest root induction (3.1/explant) was observed in 0.2 mg/L IBA under BR. The in vitro rooted plantlets were hardened and survived well on soil.

Blue Emitting Cationic Iridium Complexes Containing Two Substituted 2-Phenylpyridine and One 2,2'-Biimidazole for Solution-Processed Organic Light-Emitting Diodes (OLEDs)

  • Yun, Seong-Jae;Seo, Hoe-Joo;Song, Myungkwan;Jin, Sung-Ho;Kim, Young Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3645-3650
    • /
    • 2012
  • Two new blue emitting cationic iridium(III) complexes with two substituted 2-phenlypyridine ligands as main ligands and one 2,2'-biimidazole as an ancillary ligand, $[(L1)_2Ir(biim)]Cl$ (1) and $[(L2)_2Ir(biim)]Cl$ (2), where L1 = 2-(2',4'-difluorophenyl)-4-methylpyridine, L2 = 2-(2',4'-difluoro-3'-trifluoromethylphenyl)-4-methylpyridine and biim = 2,2'-biimidazole, were synthesized for applications in phosphorescent organic light-emitting diodes (PhOLEDs). Their photophysical, electrochemical and electroluminescent (EL) device performances were examined. The photoluminescent (PL) spectra revealed blue phosphorescence in the 450 to 485 nm range with a quantum yield of more than 10%. The iridium(III) compounds studied showed good solubility in organic solvents with no solvatochromism dependent on the solvent polarity. The solution-processed OLEDs were prepared with the configuration, ITO/PEDOT:PSS (40 nm)/mCP:Ir(III) (70 nm)/OXD-7 (20 nm)/LiF (1 nm)/Al (100 nm), by spin coating the emitting layer containing the mCP host doped with the iridium phosphors. The best performance of the fabricated OLEDs based on compound 1 showed an external quantum efficiency of 4.5%, luminance efficiency of 8.52 cd $A^{-1}$ and blue emission with the CIE coordinates (x,y) of (0.16, 0.33).

Study on the Current Spreading Effect of Blue GaN/InGaN LED using 3-Dimensional Circuit Modeling (3차원의 회로 모델링을 이용한 청색 GaN/InGaN LED의 전류 확산 효과에 관한 연구)

  • Hwang, Sung-Min;Shim, Jong-In
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2007
  • A new and simple method of 3-dimensional circuit modeling and analysis is proposed and verified experimentally for the first time by determining 3-dimensional current flow and 2-dimensional light distribution in blue InGaN/GaN multi-quantum well (MQW) light emitting diode (LED) devices. Circuit parameters of the LED consist of the resistance of the metallic film and epitaxial layer, and the intrinsic diode which represents the active region emitting the light. The circuit parameters are extracted from the transmission line model (TLM) and current-voltage relation. We applied the >> proposed method and extracted circuit parameters to obtain the light emission pattern in a top-surface emitting-type LED. The current spreading effect is analyzed theoretically and quantitatively with a variation of the resistance of metallic and epitaxial layers. The emitting-light distribution of the fabricated blue LED showed a good agreement with the analyzed result, which shows the dark emission intensity at the corner of the p-electrode.

A Study on the Characteristics of ITO Thin Film for Top Emission OLED (Top Emission OLED를 위한 ITO 박막 특성에 대한 연구)

  • Kim, Dong-Sup;Shin, Sang-Hoon;Cho, Min-Joo;Choi, Dong-Hoon;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.450-450
    • /
    • 2006
  • Organic light-emitting diodes (OLED) as pixels for flat panel displays are being actively pursued because of their relatively simple structure, high brightness, and self-emitting nature [1, 2]. The top-emitting diode structure is preferred because of their geometrical advantage allowing high pixel resolution [3]. To enhance the performance of TOLEDs, it is important to deposit transparent top cathode films, such as transparent conducting oxides (TCOs), which have high transparency as well as low resistance. In this work, we report on investigation of the characteristics of an indium tin oxide (ITO) cathode electrode, which was deposited on organic films by using a radio-frequency magnetron sputtering method, for use in top-emitting organic light emitting diodes (TOLED). The cathode electrode composed of a very thin layer of Mg-Ag and an overlaying ITO film. The Mg-Ag reduces the contact resistivity and plasma damage to the underlying organic layer during the ITO sputtering process. Transfer length method (TLM) patterns were defined by the standard shadow mask for measuring specific contact resistances. The spacing between the TLM pads varied from 30 to $75\;{\mu}m$. The electrical properties of ITO as a function of the deposition and annealing conditions were investigated. The surface roughness as a function of the plasma conditions was determined by Atomic Force Microscopes (AFM).

  • PDF

Design of white tandem organic light-emitting diodes for full-color microdisplay with high current efficiency and high color gamut

  • Cho, Hyunsu;Joo, Chul Woong;Choi, Sukyung;Kang, Chan-mo;Kim, Gi Heon;Shin, Jin-Wook;Kwon, Byoung-Hwa;Lee, Hyunkoo;Byun, Chun-Won;Cho, Nam Sung
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1093-1102
    • /
    • 2021
  • Microdisplays based on organic light-emitting diodes (OLEDs) have a small form factor, and this can be a great advantage when applied to augmented reality and virtual reality devices. In addition, a high-resolution microdisplay of 3000 ppi or more can be achieved when applying a white OLED structure and a color filter. However, low luminance is the weakness of an OLED-based microdisplay as compared with other microdisplay technologies. By applying a tandem structure consisting of two separate emission layers, the efficiency of the OLED device is increased, and higher luminance can be achieved. The efficiency and white spectrum of the OLED device are affected by the position of the emitting layer in the tandem structure and calculated via optical simulation. Each white OLED device with optimized efficiency is fabricated according to the position of the emitting layer, and red, green, and blue spectrum and efficiency are confirmed after passing through color filters. The optimized white OLED device with color filters reaches 97.8% of the National Television Standards Committee standard.

InP/ZnSe/ZnS: A Novel Multishell System for InP Quantum Dots for Improved Luminescence Efficiency and Its application in a Light-Emitting Device

  • Ippen, Christian;Greco, Tonino;Wedel, Armin
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • Indium phosphide (InP) quantum dots (QDs) are considered alternatives to Cd-containing QDs for application in light-emitting devices. The multishell coating with ZnSe/ZnS was shown to improve the photoluminescence quantum yield (QY) of InP QDs more strongly than the conventional ZnS shell coating. Structural proof for this system was provided by X-ray diffraction and transmission electron microscopy. QY values in the range of 50-70% along with peak widths of 45-50 nm can be routinely achieved, making the optical performance of InP/ZnSe/ZnS QDs comparable to that of Cd-based QDs. The fabrication of a working electroluminescent light-emitting device employing the reported material demonstrated the feasibility of the desired application.

Finite Element Method (FEM) Study on Space Charge Effects in Organic Light Emitting Diodes (OLED)

  • Kim, Kwang-Sik;Hwang, Young-Wook;Won, Tae-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.467-472
    • /
    • 2012
  • In this paper, we present a finite element method (FEM) study on the space charge effects in organic light emitting diodes. The physical model covers all the key physical processes in OLEDs, namely charge injection, transport and recombination, exciton diffusion, transfer and decay as well as light coupling, and thin-film-optics. The exciton model includes generation, diffusion, and energy transfer as well as annihilation. We assumed that the light emission originates from oscillation which thus is embodied as exciton in a stack of multilayer. We discuss the accumulation of charges at internal interfaces and their signature in the transient response as well as the electric field distribution. We also report our investigation on the influence of the insertion of the emission layer (EML) in the bilayer structure.

Simple modification of anthracene for the blue emitting materials

  • Kim, Si Hyun;Lee, Seung Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.101-107
    • /
    • 2017
  • Anthracene has been a motive molecule for the blue-emitting materials in OLED. Since the blue emission needs big band gap between HOMO and LUMO, the blue-emitting materials are rare. In this paper, some anthracene derivatives containing simple aryl groups are synthesized and characterized. Regardless of the substituents the absorption and the emission bands are similar to each other and similar to the derivatives with the bulky silyl groups. The thermal and the CIE tests imply that among the tested 9-(2-naphthyl)-10-phenylanthracene is most promising for the diode. The material for the emission layer has to be investigated, which is simple to be prepared as well as good in the electrical and the thermal properties.

A Mono-Chelated Boron Complex as a New Blue Emission Layer in Organic Light Emitting Diodes

  • Jeong, Ji-Hoon;Rho, Hyeon-Hee;Kim, Jun-Ho;Ha, Yun-Kyung;Kim, Young-Sik;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.620-622
    • /
    • 2004
  • In this study, a mono-chelated compound as novel blue light emitting material, $BPh_2$(pbi) (pbi = 2-(2-Pyridyl)benzimidazole) was synthesized Organic light emitting Diodes (OLEDs), which has a ITO/NPB(40 nm)/Boron(30 nm)/$Alq_3$(1 nm)/Liq(3 nm)/Al(150 nm) structure, has been fabricated. The maximum brightness of the device is up to about 900 cd/$m^2$ and 0.54 cd/A at 11.5 V. The EL peaks and CIE coordinates of our OLEDs is 457 nm and (0.26, 0.29), respectively.

  • PDF