• Title/Summary/Keyword: Emitters

Search Result 306, Processing Time 0.023 seconds

In-situ TEM of Carbon Nanotube Field Emitters and Improvement of Electron Emission from Nanotube Films by Laser Treatment

  • Saito, Yahachi;Seko, Kazuyuki;Kinoshita, Jun-ichi;Ishida, Toshiyuki;Yotani, Junko;Kurachi, Hiroyuki;Uemura, Sashiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1081-1086
    • /
    • 2005
  • Dynamic behavior of carbon nanotubes (CNTs) in an electric field is directly observed by in-situ transmission electron microscopy (TEM). The CNT field emitters examined by in-situ TEM are multiwalled, double-walled and single walled CNTs. Threshold fields for electron emission and sustainable emission currents depending on the structure of CNTs are presented, and degradation mechanism of the CNT field emitters is discussed. In addition to the microscopy studies on individual CNTs, our recent development in surface treatment of CNT layers grown by chemical vapor deposition, which brings about high density of emission current and high uniformity, is also presented.

  • PDF

Coupled Mode Analysis of Phase-Locked CSP Laser Arrays (위상이 고착된 CSP 레이저 어레이의 결합 모우드 해석)

  • 吳煥述
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.133-139
    • /
    • 1987
  • A phase-locked Channel-Substrate-Planar(CSP) laser arrays is described. Arrays of emitters with weak coupling are operated in a set of discrete modes determined by the number and spacing of the emitters. The interactions between emitters lead to a splitting of the wave-length and gain which are calculated from the coupling strength. Phase-locked arrays has exhibited to CW output-power as high as 80 m W and the highest order mode will have preferred oscillation. A strong hole burning is occurred at p=30m W. The most stable lasing mode is occurred at element spacing S=3.5\ulcornerm and there is no coupling at S>7 \ulcornerm.

  • PDF

Indoor Positioning System using Incident Angle Detection of Infrared sensor (적외선 센서의 입사각을 이용한 실내 위치인식 시스템)

  • Kim, Su-Yong;Choi, Ju-Yong;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.991-996
    • /
    • 2010
  • In this paper, a new indoor positioning system based on incident angle measurement of infrared sensor has been suggested. Though there have been various researches on indoor positioning systems using vision sensor or ultrasonic sensor, they have not only advantages, but also disadvantages. In a new positioning system, there are three infrared emitters on fixed known positions. An incident angle sensor measures the angle differences between each two emitters. Mathematical problems to determine the position with angle differences and position information of emitters has been solved. Simulations and experiments have been implemented to show the performance of this new positioning system. The results of simulation were good. Since there existed problems of noise and signal conditioning, the experimented has been implemented in limited area. But the results were acceptable. This new positioning method can be applied to any indoor systems that need absolute position information.

Silicon field emission arrays coated with a $CoSi_2$ layer grown by reactive chemical vapor deposition

  • Han, Byung-Wook;Rhee, Hwa-Sung;Ahn, Byung-Tae;Lee, Nam-Yang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.131-132
    • /
    • 2000
  • We prepared Si emitters coated with a MOCVD $CoSi_2$ layer to improve the emission properties. The $CoSi_2$ layer was grown on Si field emitters in situ by reactive chemical-vapor deposition of cyclopentadienyl dicarbonyl cobalt at 600 ${\sim}$ $650^{\circ}C$. The $CoSi_2$ coated field emitters showed enhanced emission properties of current-voltage characteristics, which were due to the increase of emitting area from Fowler-Nordheim plot. And the emission current fluctuation decreased due to the chemically stable surface properties of $CoSi_2$.

  • PDF

Immunity Improvement of Mo Silicidized a-Si FEA to Vacuum Environments

  • Shim, Byung-Chang;Lee, Jong-Duk;Park, Byung-Gook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.141-142
    • /
    • 2000
  • In order to improve electron field emission and its stability, tip surface of amorphous silicon field emitters have been coated with molybdenum layer with a thickness of 25 nm through the gate opening and annealed rapidly in inert ambient. Compared with amorphous silicon field emitters, Mo silicidized amorphous silicon field emitters exhibited lower turn on voltage about 9 V, 3.8 times higher maximum current, 3.1 times lower fluctuation range and less change of the emission current depending on the vacuum level.

  • PDF

Fabrication of Integrated Triode-type CNT Field Emitters (집적화된 3 극형 탄소 나노 튜브 전자 방출원의 제작)

  • 이정아;문승일;이윤희;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.212-216
    • /
    • 2004
  • In this paper, we have fabricated a triode field emitter using carbon nanotubes (CNTs) directly grown by thermal chemical vapor deposition(CVD) method as an electron omission source. Vertically aligned CNTs have been grown in the center of the gate hole, to the size of 1.5 ${\mu}{\textrm}{m}$ in diameter, with help of a sacrificial layer of a type generally used in metal tip process. By the method of tilling the substrate, we made CNTs emitters both with and without SiO$_2$layer, a sidewall protector, deposited on sidewall of gate. After that we researched the electrical characteristics about two types of emitters. In effect, a sidewall protector can enhance the electrical characteristics by suppressing the problem of short circuits between the gate and the CNTs. The leakage current of an emitter with a sidewall protector is approximately sevenfold lower than that of an emitter without it at a gate voltage of 100 V.

Preliminary Study on Field Emitter Array Cathodes for Electrodymanic Tether Propulsion

  • Kitamura, Shoji;Nishida, Shin'ichiro;Iseki, Yasushi;Okawa, Yasushi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.300-305
    • /
    • 2004
  • A preliminary study on. field emitter array cathodes was conducted aiming at applying for electrodymanic tether (EDT) propulsion systems. The EDT propulsion systems are assumed to use for active removal systems of post-mission spacecraft, which would otherwise become space debris. A survey on field emit-ter array cathode technology was conducted, and it showed that carbon nanotube (CNT) emitters are suit-able to EDT application. Trial fabrications and evaluation tests of CNT emitters were conducted, which demonstrated a target emission current density of 10 ㎃/$\textrm{cm}^2$. It was found out that the most important technical issue for developing CNT emitters is to improve the performance against voltage breakdown between the emitter and the opposite electrode.

  • PDF

Fabrication and Field Emission Properties of Dot-patterned CNT Emitters using Mechanically Dispersed Photosensitive CNT paste (기계적 분산 처리한 CNT 페이스트의 제조와 Dot 패턴된 에미터의 전계방출 특성)

  • Lee, Han-Sung;Jeon, Ji-Hyeon;Kim, Jin-Hee;Goak, Jeung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.450-451
    • /
    • 2007
  • Dot-patterned carbon nanotube (CNT) emitters with excellent field emission properties were fabricated using photosensitive CNT paste. We carried out a parametric study on the compositions and the fabrication processes of the paste, in particular, by ball milling CNTs, which were optimized in terms of dot shapes and their field emission characteristics. The ball milling process improved the field emission current of the dot-patterned CNT emitters several times higher than that of the non-milled paste.

  • PDF

Potential of chemical rounding for the performance enhancement of pyramid textured p-type emitters and bifacial n-PERT Si cells

  • Song, Inseol;Lee, Hyunju;Lee, Sang-Won;Bae, Soohyun;Hyun, Ji Yeon;Kang, Yoonmook;Lee, Hae-Seok;Ohshita, Yoshio;Ogurad, Atsushi;Kim, Donghwan
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1268-1274
    • /
    • 2018
  • We have investigated the effects of chemical rounding (CR) on the surface passivation and/or antireflection performance of $AlO_{x^-}$ and $AlO_x/SiN_x:H$ stack-passivated pyramid textured $p^+$-emitters with two different boron doping concentrations, and on the performance of bifacial n-PERT Si solar cells with a front pyramid textured $p^+$-emitter. From experimental results, we found that chemical rounding markedly enhances the passivation performance of $AlO_x$ layers on pyramid textured $p^+$-emitters, and the level of performance enhancement strongly depends on boron doping concentration. Meanwhile, chemical rounding increases solar-weighted reflectance ($R_{SW}$) from ~2.5 to ~3.7% for the $AlO_x/SiN_x:H$ stack-passivated pyramid textured $p^+$-emitters after 200-sec chemical rounding. Consequently, compared to non-rounded bifacial n-PERT Si cells, the short circuit current density Jsc of 200-sec-rounded bifacial n-PERT Si cells with ~60 and ${\sim}100{\Omega}/sq$ $p^+$-emitters is reduced by 0.8 and $0.6mA/cm^2$, respectively under front $p^+$-emitter side illumination. However, the loss in the short circuit current density Jsc is fully offset by the increased fill factor FF by 0.8 and 1.5% for the 200-sec-rounded cells with ~60 and ${\im}100{\Omega}/sq$ $p^+$-emitters, respectively. In particular, the cell efficiency of the 200-sec-rounded cells with a ${\sim}100{\Omega}/sq$ $p^+$-emitter is enhanced as a result, compared to that of the non-rounded cells. Based on our results, it could be expected that the cell efficiency of bifacial n-PERT Si cells would be improved without additional complicated and costly processes if chemical rounding and boron doping processes can be properly optimized.

Tungsten With Tip Sharpening by Electrochemical Etching (전기화학적 에칭법에 의한 텅스텐 와이어의 Sharp tip 제조에 관한 연구)

  • 우선기;이홍로
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.45-53
    • /
    • 1998
  • Sharp tips are commonly used for applications in fields as diverse as nanolithography, lowvoltage field emitters, emitters, nanoelectroniecs, electrochemisty, cell biology, field-ion and electron microscopy. tungsten wire, mater만 used in this experiment, which test the chip of wafer has been used to the needle of probe card. Tungsten wire was sharpened by electrochemical etching methode to get a typical tip shape.

  • PDF