• Title/Summary/Keyword: Emitters

Search Result 307, Processing Time 0.034 seconds

Significant Improvements in White OLED Color Purity by Doping Ratio of $(POB)_{2}Ir(pic)$ ($(POB)_{2}Ir(pic)$의 doping 비율에 따른 White OLED의 색순도 향상에 관한 연구)

  • Kim, Dong-Eun;Kim, Byoung-Sang;Park, Jae-Chu;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1373-1374
    • /
    • 2007
  • We has been synthesized $(POB)_{2}Ir(pic)$ as a red emitting materials and evaluated in the organic light emitting diodes (OLED). The layer of $Alq_3$ doped with $(POB)_{2}Ir(pic)$ as emitters has been demonstrated. The structure of the device is ITO/ NPB (40 nm) / $Zn(HPB)_2$ (40 nm)/ $Alq_3$ : $(POB)_{2}Ir(pic)$ (30 nm) / LiF / Al. We varied the doped rate of $(POB)_{2}Ir(pic)$. The doped rate is 0.4 %, 0.6%, 0.8 and 1.2%, respectively. When the doped rate of the $Alq_3$:$ Ir(POB)_{2}(pic)$ was 0.6%, white emission is achieved. The Commission Internationale de l'Eclairage (CIE) coordinates of the white emission are (0.316, 0.331) at an applied voltage of 10.75V.

  • PDF

Mass spectrometry analysis system with integrated micro electrospray ionization emitter for peptide detection (펩타이드 질량 분석을 위한 전기 이온화 분사기의 제작 및 성능 평가)

  • Kim, Min-Su;Joo, Hwang-Soo;Kim, Byung-Gee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1534-1535
    • /
    • 2007
  • This paper describes a novel microfluidic device with a microfabricated electrospray source for a sheathless electrospray ionization interface to a mass spectrometer. This electrospray ionization-mass spectrometry (ESI-MS) device consists of a triangular-shaped metal emitter, allowing the generation of an efficient electrospray for peptide detection, and microfluidic channels monolithically in a glass microchip. The performance of the proposed interface was evaluated by opimizing its experimental condition and spraying standard peptides. The spraying has high signal strength and stability, with a relative standard deviation of 2.9% and singly-charged and doubly-charged peaks of the peptides were successfully detected. The metal emitter source showed a good performance to be comparable to commercially available emitters in signal strength and stability.

  • PDF

Effects of TiN bufer on field emission properties of conical-type tungsten tips with carbon nanotubes coated (원뿔형 CNT-W 팁의 TiN 완충막 유무에 따른 전계방출 특성)

  • Kim, Young-Kwang;Yun, Sung-Jun;Kim, Won;Kim, Jong-Pil;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1271-1272
    • /
    • 2007
  • Experimental results regarding to the structural properties of carbon nanotubes (CNTs) and the field-emission characteristics of CNT-coated tungsten (W) tips are presented. CNTs are successfully grown on conical-type W-tips by inductively coupled plasma-chemical vapor deposition (ICP-CVD) with or without inserting a TiN-buffer layer prior to the formation of Ni catalysts. For all the CNTs grown, their nanostructures, morphologies, and crystalline structures are analyzed by FESEM, HRTEM, and Raman spectroscopy. Furthermore, the emission properties of CNT-based field-emitters are characterized to estimate the maximum current density and the threshold voltage. The results obtained in this study indicate that the emission current level of the CNT-emitter without using a TiN buffer is desirable for the application of micro-focused x-ray systems.

  • PDF

Optical characteristics of p-type ZnO epilayers doped with Sb by metalorganic chemical vapor deposition

  • Kwon, B.J.;Cho, Y.H.;Choi, Y.S.;Park, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.122-122
    • /
    • 2010
  • ZnO is a widely investigated material for the blue and ultraviolet solid-state emitters and detectors. It has been promoted due to a wide-band gap semiconductor which has large exciton binding energy of 60 meV, chemical stability and low radiation damage. However, there are many problems to be solved for the growth of p-type ZnO for practical device applications. Many researchers have made an efforts to achieve p-type conductivity using group-V element of N, P, As, and Sb. In this letter, we have studied the optical characteristics of the antimony-doped ZnO (ZnO:Sb) thin films by means of photoluminescence (PL), PL excitation, temperature-dependent PL, and time-resolved PL techniques. We observed donor-to-acceptor-pair transition at about 3.24 eV with its phonon replicas with a periodic spacing of about 72 meV in the PL spectra of antimony-doped ZnO (ZnO:Sb) thin films at 12 K. We also investigate thermal activation energy and carrier recombination lifetime for the samples. Our result reflects that the antimony doping can generate shallow acceptor states, leading to a good p-type conductivity in ZnO.

  • PDF

Shielding Thickness Calculations for Line Gamma-ray Sources in Regular Geometrical Array (일반적(一般的) 배열(配列)인 선형(線型) 감마선원(線源)의 차폐계산(遮蔽計算))

  • Lee, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.3 no.1
    • /
    • pp.29-32
    • /
    • 1978
  • A shielding calculation has been carried out for a storage vault of $5292(42{\times}42{\times}3)$ waste drums in which the mixed radioactive gamma-emitters are contained. The required ordinary concrete shielding thickness seems to be approximately 50cm. The results in terms of dose rate for polyenergy gammas appear to be considerably higher than those of the averaged energy gamma.

  • PDF

Synthesis of Shape Controlled Pd Nanoparticles and Surface-Induced Photoreduction of 4-Nitrobenzenethiol on Pd (모양이 조절된 팔라듐 나노입자의 합성과 4-나이트로벤젠 사이올의 광환원 반응)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.458-461
    • /
    • 2019
  • The facile synthesis of shape-controlled Pd nanoparticles (PdNPs) with ascorbic acid as a reducing agent and cetyltrimethylammonium bromide (CTAB) as a capping agent is presented in this study. The synthesized PdNPs were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman Spectroscopy. The prepared PdNPs show efficient surface-enhanced Raman scattering (SERS) properties. SERS studies on the adsorption characteristics of 1,4-phenylene diisocyanide (1,4-PDI) on colloidal PdNPs have revealed that the relative peak intensity of the $(NC)_{free}$ and $(NC)_{bound}$ modes distinctly depends on the 1,4-PDI concentration as well as the shape of the PdNPs. Furthermore, we found that the PdNPs are also efficient photoelectron emitters such that the SERS spectrum of 4-nitrobenzenethiol (4-NBT) on PdNPs is readily converted to that of 4-aminobenzenethiol (4-ABT) under 632.8 nm radiation.

Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants

  • Islam, Mahfuzul;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.61 no.3
    • /
    • pp.122-137
    • /
    • 2019
  • Methane, one of the important greenhouse gas, has a higher global warming potential than that of carbon dioxide. Agriculture, especially livestock, is considered as the biggest sector in producing anthropogenic methane. Among livestock, ruminants are the highest emitters of enteric methane. Methanogenesis, a continuous process in the rumen, carried out by archaea either with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to methane or with methylotrophic pathway, which the substrate for methanogenesis is methyl groups. For accurate estimation of methane from ruminants, three methods have been successfully used in various experiments under different environmental conditions such as respiration chamber, sulfur hexafluoride tracer technique, and the automated head-chamber or GreenFeed system. Methane production and emission from ruminants are increasing day by day with an increase of ruminants which help to meet up the nutrient demands of the increasing human population throughout the world. Several mitigation strategies have been taken separately for methane abatement from ruminant productions such as animal intervention, diet selection, dietary feed additives, probiotics, defaunation, supplementation of fats, oils, organic acids, plant secondary metabolites, etc. However, sustainable mitigation strategies are not established yet. A cumulative approach of accurate enteric methane measurement and existing mitigation strategies with more focusing on the biological reduction of methane emission by direct-fed microbials could be the sustainable methane mitigation approaches.

Digital X-Ray Technology and Applications (디지털 엑스선 기술과 응용)

  • Jeong, J.W.;Kang, J.T.;Kim, J.W.;Park, S.;Lee, M.L.;Song, Y.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.1-13
    • /
    • 2019
  • In modern times, X-ray imaging has become a necessary tool for early diagnosis, quality control, nondestructive testing, and security screening. X-ray imaging equipment generally comprises an X-ray generator and an image sensor. Most commercially available X-ray generators employ filament-thermionic electron-based X-ray tubes, thus demonstrating typical analog behavior, such as slow response and large stray X-rays. Furthermore, digital X-ray sources, which have been studied extensively using field electron emitters manufactured from nanometer-scale materials, provide fast and accurately controlled ultra-shot X-rays. This could usher in a new era of X-ray imaging in medical diagnosis and nondestructive inspections. Specifically, digital X-ray sources, with reduced X-ray dose, can significantly improve the temporal and spatial resolution of fluoroscopy and computed tomography. Recently, digital X-ray tube technologies based on carbon nanotubes, developed by Electronics and Telecommunications Research Institute, have been transferred to several companies and commercialized for dental imaging for the first time.

Overestimation of Radioactivity Concentration of Difficult-To-Measure Radionuclides in Scaling Factor Methodology

  • Park, Junghwan;Kim, Tae-Hyeong;Lee, Jeongmook;Kim, Junhyuck;Kim, Jong-Yun;Lim, Sang Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.367-386
    • /
    • 2021
  • The overestimation and underestimation of the radioactivity concentration of difficult-to-measure radionuclides can occur during the implementation of the scaling factor (SF) method because of the uncertainties associated with sampling, radiochemical analysis, and application of SFs. Strict regulations ensure that the SF method as an indirect method does not underestimate the radioactivity of nuclear wastes; however, there are no clear regulatory guidelines regarding the overestimation. This has been leading to the misuse of the SF methodology by stakeholders such as waste disposal licensees and regulatory bodies. Previous studies have reported instances of overestimation in statistical implementation of the SF methodology. The analysis of the two most popular linear models of the SF methodology showed that severe overestimation may occur and radioactivity concentration data must be dealt with care. Since one major source of overestimation is the use of minimum detectable activity (MDA) values as true activity values, a comparative study of instrumental techniques that could reduce the MDAs was also conducted. Thermal ionization mass spectrometry was recommended as a suitable candidate for the trace level analysis of long-lived beta-emitters such as iodine-129. Additionally, the current status of the United States and Korea was reviewed from the perspective of overestimation.

Measurement of low energy beta radiation from Ni-63 by using peeled-off Gafchromic EBT3 film

  • Ji, Wanook;Kim, Jong-Bum;Kim, Jin-Joo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3811-3815
    • /
    • 2022
  • Ni-63 is pure beta source which emits low energy beta particles. The Ni-63 sources were fabricated to develop the beta-voltaic battery which converts decay energy into electrical energy for power generation. Activity distribution of the source was important factor of power producibility of the beta-voltaic battery. Liquid scintillation counter widely used for measurement of low energy beta emitters was not suitable to measure activity distribution. In this study, we used the peeled-off Gafchromic™ EBT3 film to measure the activity distribution of the Ni-63 source. Absorbed dose was increased proportionally to the source activity and exposure duration. The low energy beta particles could transport the energy into the active layer without the polyester protective layer. Also, Activity distribution was measured by using the peeled-off EBT3 film. Two-dimensional dosimetric distribution was suitable to measure the activity distribution. To use the peeled-off EBT3 film is user-friendly and cost-effective method for quality assurance of the Ni-63 sources for the beta-voltaic battery.