• Title/Summary/Keyword: Emitters

Search Result 307, Processing Time 0.027 seconds

Epoxylite Influence on Field Electron Emission Properties of Tungsten and Carbon Fiber Tips

  • Alnawasreh, Shady S;Al-Qudah, Ala'a M;Madanat, Mazen A;Bani Ali, Emad S;Almasri, Ayman M;Mousa, Marwan S
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.227-237
    • /
    • 2016
  • This investigation deals with the process of field electron emission from composite microemitters. Tested emitters consisted of a tungsten or carbon-fiber core, coated with a dielectric material. Two coating materials were used: (1) Clark Electromedical Instruments Epoxylite resin and (2) Epidian 6 Epoxy resin (based on bisphenol A). Various properties of these emitters were measured, including the current-voltage characteristics, which are presented as Fowler-Nordheim plots, and the corresponding electron emission images. A field electron microscope with a tip (cathode) to screen (anode) distance of 10 mm was used to electrically characterize the emitters. Measurements were carried out under ultra-high vacuum conditions with a base pressure of $10^{-6}$ Pascal ($10^{-8}$ mbar).

A Study on Operating Lifetime of Cs3Sb Emitters in Panel Device Applications

  • Jeong, Hyo Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.176-179
    • /
    • 2017
  • Non-vacuum processing technology was used to produce $Cs_3Sb$ photocathodes on substrates and fabricate in-situ panel devices. Electrical properties of these panel devices were characterized by measuring anode current and charge dose as functions of devices operation time. An excitation light source with a 475 nm wavelength was used for photocathodes. Results showed that emission properties of these photocathode emitters depended heavily on the vacuum level of these devices and that $Cs_3Sb$ flat emitters had the potential of operating for a long lifetime with stable electron emission characteristics via re-cesiation process in the panel device. These features make $Cs_3Sb$ photocathodes suitable as flat emitters in panel device applications.

Uniform field emission on ink-jet printed CNT emitters through oxygen trimming

  • Song, Dae-Hun;Yun, Ho-Gyu;Han, Jong-Hun;Kim, Seong-Hyeon;Lee, Gyeong-Il;Lee, Cheol-Seung;Lee, Nae-Seong;Lee, Han-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.450-450
    • /
    • 2010
  • Recently, field emission emitters made by carbon nanotubes(CNTs) and ink-jet method have been extensively studied due to their low cost, little limitation of size and a high resolution. When CNT emitters are operated, a few highly protruded ones generate most of the emission currents that cause spatial nonuniformity. In this study, we applied selective oxidation to solve this problem on ink-jet printed CNT emitters. Consequently, O2 exposures to field emitting CNT arrays give rise to a permanent damage selectively on the highly emitting CNTs. In spite of turn-on field increase, emission images was showed remarkably uniform after oxygen trimming.

  • PDF

Improving the Long-term Field Emission Stability of Carbon Nanotubes by Coating Co and Ni Oxide Layers

  • Choe, Ju-Seong;Lee, Han-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.18.1-18.1
    • /
    • 2011
  • Some applications of carbon nanotubes (CNTs) as field emitters, such as x-ray tubes and microwave amplifiers, require high current emission from a small emitter area. To emit the high current density, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects including high crystallinity, aspect ratio, distribution density, height uniformity, adhesion on a substrate, low outgassing rate during electron emission in vacuum, etc. In particular, adhesion of emitters on the substrate is one of the most important parameters to be secured for high current field emission from CNTs. So, we attempted a novel approach to improve the adhesion of CNT emitters by incorporating metal oxide layers between CNT emitters. In our previous study, CNT emitters were fabricated on a metal mesh by filtrating the aqueous suspensions containing both highly crystalline thin multiwalled CNTs and thick entangled multiwalled CNTs. However, the adhesion of CNT film was not enough to produce a high emission current for an extended period of time even after adopting the metal mesh as a fixing substrate of the CNT film. While a high current was emitted, some part of the film was shown to delaminate. In order to strengthen the CNT networks, cobalt-nickel oxides were incorporated into the film. After coating the oxide layer, the CNT tips seemed to be more strongly adhered on the CNT bush. Without the oxide layer, the field emission voltage-current curve moved fast to a high voltage side as increasing the number of voltage sweeps. With the cobalt-nickel oxide incorporated, however, the curve does not move after the second voltage sweep. Such improvement of emission properties seemed to be attributed to stronger adhesion of the CNT film which was imparted by the cobalt-nickel oxide layer between CNT networks. Observed after field emission for an extended period of time, the CNT film with the oxide layer showed less damage on the surface caused by high current emission.

  • PDF

Analysis of CRLB Performances with CAF under Multiple Emitters (CAF 이용 다중 발기하에서의 CRLB 성능 분석)

  • Lee, Young-kyu;Yang, Sung-hoon;Lee, Chang-bok;Park, Young-Mi;Lee, Moon-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.589-594
    • /
    • 2015
  • In this paper, we described the Cramer-Rao Lower Bound (CLRB) performances of Time Difference of Arrival (TDOA) and Frequency Difference of Arrival (FDOA) methods when there are multiple emitters. The TDOA and FDOA values between two receivers can be simultaneously estimated by using the so-called Complex Ambiguity Function (CAF). In the case of multiple emitters, there exist Inter Symbol Interferences (ISIs) in the measurement data. Therefore, it is required to reduce the effect of ISI and provide a performance evaluation method of TDOA and FDOA estimations. In order to eliminate the ISIs, using of a filter bank before calculating CAF is proposed when the carrier frequencies of the emitters are different to one another. Angle of Arrival (AOA) or Received Signal Strength (RSS) methods before calculating CAF were proposed to reduce the ISIs when the carrier frequencies are the same. In order to evaluate the CRLB of TDOA and FDOA estimations, we employed the conditional probability distribution method and described the numerical comparison results.

Effect of Photosensitive Carbon Nanotube Paste on Field Emission Properties (감광성 탄소나노튜브 페이스트의 조성과 열처리가 전계방출 특성에 미치는 영향)

  • Oh, Jeong-Seob;Kim, Dae-Jun;Jeong, Jin-Woo;Song, Yoon-Ho;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.550-556
    • /
    • 2006
  • Photosensitive carbon nanotube (CNT) pastes are explored to develop a CNT field emitter for field emission display (FED) application. We formulated a photosensitive paste including multi-walled CNTs (MWNTs) for screen printing. The photosensitive CNT paste was synthesized by mixing of MWNTs, inorganic fillers (nano metal), organic vehicle, monomers and photo initiator. The CNT paste films were patterned by using backside exposure technique. The CNTs were strongly fixed on a cathode by formation of carbon residue during firing process. For the CNT emitters, current-voltage(I-V) characteristics and images of field emission were evaluated. The emission properties of CNT emitters are dependent on the paste composition. A turn-on electric field for the CNT field emitters is measured to be 1 V/$\mu$m. Additionally, the effect of heat treatment parameter on field emission properties was discussed. The newly formulated photosensitive CNT paste can be potentially applicable to highly reliable CNT field emitters.

Field Emission Stability of Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

  • Kim, B.K.;Kong, B.Y.;Seon, J.Y.;Lee, N.S.;Kim, H.J.;Han, I.T.;Choi, J.H.;Jung, J.E.;Kim, J.M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.863-866
    • /
    • 2003
  • Multi-walled carbon nanotubes (CNTs) were synthesized on glass substrates in the different ramp-up heating ambient of vacuum, He, Ar, and $N_{2}$ by thermal chemical vapor deposition. CNTs with higher crystallinity were developed in the buffer gases with faster growth rates than in vacuum. Field emission characteristics were strongly related to the relative position of CNT emitters to the cathode electrodes. The areal-spread emission and instability were overcome by locating the emitters far away from the edges of cathode electrodes. The electrical conditioning of emitters improved their emission uniformity over a large area although it decreased the emission current. This study also discussed the long-term stability of CNT emitters.

  • PDF

Carbon nanotube / silane hybride film for highly efficient field emitter

  • Jeong, Hae-Deuk;Kim, Ho-Young;Jeong, Hee-Jin;Han, Joong-Tark;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.181-181
    • /
    • 2010
  • Few-walled carbon nanotubes (FWNTs)-based field emitters with long term stability are fabricated by using a spray method. Tetraethylorthosilicate (TEOS) sol as a binder was mixed with dispersed solution of FWNTs to enhance the adhesion of FWNTs on the cathode substrate. Due to the strong intermolecular interaction of TEOS to the functional groups attached on CNTs and substrate, CNTs are tightly adhered to the cathode electrode when heat treatment is performed at $150^{\circ}C$ for 1 hour, resulting in a stable electron emission of CNT emitters for long time. Excellent field emission characteristics were exhibited, with a large field enhancement factor and low turn-on voltage, comparable to those of CNT emitters fabricated by a screen printing of CNT paste. Therefore, FWNTs / TEOS hybrid films could be utilized as an alternative for the efficient and reliable field emitters.

  • PDF

Field Emission Properties of Carbon Nanotubes on Graphite Tip

  • Shin, Ji-Hong;Shin, Dong-Hoon;Song, Yenan;Sun, Yuning;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.383-383
    • /
    • 2011
  • Generally, field emitters can be categorized into two types according to the emitter shape, one is a planar field emitter and the other is a point emitter. The planar field emitter is used for displays, flat lamps and signage boards. On the other hands, the point field emitter is expected to play a significant role in x-ray sources and electron beam sources. Such applications of the point field emitters, especially, need large emission current and high emission stability with a small electron beam size. A few reports announced point emitters made by carbon nanotubes (CNTs). However, they still have suffered from poor reproducibility and low emission current. Here, we demonstrated high performance CNT point emitters by attaching CNTs onto graphite rod. Graphite rod exhibited good electrical conductivity and chemical stability. In this method, the shape of the point emitter could be easily controlled by changing the length and diameter of the graphite rod. The CNT point emitter showed emission current over 1 mA at an applied electric field of 1.4 V/${\mu}m$. We consider that the stable emission performance is attributed to the stable contact between CNTs and graphite rod.

  • PDF

Effects of Carbon Nitride Surface Layers and Thermal Treatment on Field-Emission and Long-Term Stability of Carbon Nanotube Micro-Tips (질화탄소 표면층 및 열처리가 탄소 나노튜브 미세팁의 전계방출 및 장시간 안정성에 미치는 영향)

  • Noh, Young-Rok;Kim, Jong-Pil;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • The effects of thermal treatment on CNTs, which were coated with a-$CN_x$ thin film, were investigated and related to variations of chemical bonding and morphologies of CNTs and also properties of field emission induced by thermal treatment. CNTs were directly grown on nano-sized conical-type tungsten tips via the inductively coupled plasma-chemical vapor deposition (ICP-CVD) system, and a-$CN_x$ films were coated on the CNTs using an RF magnetron sputtering system. Thermal treatment on a-$CN_x$ coated CNT-emitters was performed using a rapid thermal annealing (RTA) system by varying temperature ($300-700^{\circ}C$). Morphologies and microstructures of a-$CN_x$/CNTs hetero-structured emitters were analyzed by FESEM and HRTEM. Chemical composition and atomic bonding structures were analyzed by EDX, Raman spectroscopy, and XPS. The field emission properties of the a-$CN_x$/CNTs hetero-structured emitters were measured using a high vacuum (below $10^{-7}$ Torr) field-emission measurement system. For characterization of emission stability, the fluctuation and degradation of the emission current were monitored in terms of operation time. The results were compared with a-$CN_x$ coated CNT-emitters that were not thermally heated as well as with the conventional non-coated CNT-emitters.