• Title/Summary/Keyword: Emission spectroscopy

Search Result 1,166, Processing Time 0.028 seconds

Experimental Investigation of Steam Plasma Characteristics for High Energy Density Metal Powder Ignition Using Optical Emission Spectroscopy Method (OES 방법을 이용한 고에너지 금속 분말 점화용 스팀 플라즈마 특성에 관한 실험적 고찰)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.545-550
    • /
    • 2012
  • High Energy density metal powder has high melting point of oxide film. By this, the ignition source that can make a thermal effect of high-temperature during short time is needed to overcome ignition disturbance mechanism by oxide film. So effective ignition does not occurred with hydrocarbon ignitor, $H_2-O_2$ ignitor, high power laser. But steam plasma can be generate about 5000 K temperature field in short order. Because a steam plasma uses steam as the working gas, it is environmental-friendly and economical. Therefore in this study, we analyze steam plasma temperature field and radical species with optical emission spectroscopy method in order to apply steam plasma ignitor to metal combustion system and cloud particle ignition was identified in visual.

  • PDF

Intramolecular Proton Transfers of 2-hydroxy-4,5-naphthotropone

  • Du-Jeon Jang
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.441-444
    • /
    • 1991
  • The intramolecular proton transfers of 2-hydroxy-4,5-naphthotropone in room temperature solutions are studied using static and time-resolved absorption and emission spectroscopy. Dual normal and tautomer fluorescence is observed in ethanol solution, while only the tautomer fluorescence is observed in cyclohexane solution. The fluorescence lifetimes and quantum yields in ethanol and cyclohexane solutions indicate that in hydrocarbon solvents, rapid intersystem crossing competes with proton transfer in the first excited singlet state. Transient absorption spectra and kinetics indicate that proton transfer also undergoes in the first triplet state with a transfer time of ∼ 3 ns. No transient absorption from the tautomer ground state indicates a rapid back proton transfer in the ground state.

Optical Emission Characteristics of Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어방전의 발광특성)

  • Kim, Jin Gi;Kim, Yoon Kee
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.100-106
    • /
    • 2015
  • Plasma properties of dielectric barrier discharges (DBDs) at atmospheric pressure were measured and characterized using optical emission spectroscopy. Optical emissions were measured from argon, nitrogen, or air discharges generated at 5-9 kV using 20 kHz power supply. Emissions from nitrogen molecules were markedly measured, irrespective of discharge gases. The intensity of emission peaks was increased with applied voltage and electrode gap. The short wavelength peaks (315.9 nm and 337.1 nm) measured at the middle of DBDs were significantly increased with applied voltage. The optical emission from DBDs decreased with the addition of oxygen gas, which was especially significant in argon discharge. Emission from oxygen molecules cannot be measured from air discharge and argon discharge with 4.8% oxygen. The emission intensity at 337.1 nm and 357.7 nm related with nitrogen molecule was sensitively changed with electrode types and discharge voltages. However, the pattern of argon emission spectrum was nearly the same, irrespective of electrode type, oxygen content, and discharge voltage.

Surface States and Field Emission Properties of Oxygen Plasma Treated Carbon Nanotubes (산소 플라즈마 처리한 탄소나노튜브의 표면상태와 전계방출 특성)

  • Lee, Sunwoo;Lee, Boong-Joo;Park, Gu-Bum;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.376-379
    • /
    • 2013
  • Multi-walled carbon nanotubes (MWCNTs) were synthesized using catalytic chemical vapor deposition (CVD) method. Oxygen plasma treatment was applied to modify surface state of the CNTs synthesized for improvement of field emission performance. Surface state of the plasma treated CNTs was studied by X-ray photoelectron spectroscopy (XPS). The surface states of the CNTs were changed as a function of plasma treatment time. The oxygen related carbon shift was moved toward higher binding energy with the plasma treatment time. This result implies that the oxygen plasma treatment changes the surface state effectively. While any shift in carbon 1s peak was not detected for the as grown CNTs, oxygen related carbon shift was detected for the plasma treated CNTs. Carbon shift implies that closed CNT tips were opened by the oxygen plasma and reacted with oxygen species. Since the field emission occurs at pentagons or dangling bonds of the CNT tips, the increase of carbon-oxygen bonds plays an important role in field emission behavior by increasing the number of electron emission sites resulting in improvement of the field emission performance.

Enhancement of Field Emission Characteristics of CuO Nanowires Formed by Wet Chemical Process (습식공정으로 형성된 구리산화물 나노와이어의 전계방출특성 향상)

  • Sung Woo-Yong;Kim Wal-Jun;Lee Seung-Min;Lee Ho-Young;Park Kyung-Ho;Lee Soonil;Kim Yong-Hyup
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.313-318
    • /
    • 2004
  • Vertically-aligned and uniformly-distributed CuO nanowires were formed on copper-coated Si substrates by wet chemical process, immersing them in a hot alkaline solution. The effects of hydrogen plasma treatment on the field emission characteristics of CuO nanowires were investigated. It was found that hydrogen plasma treatment enhanced the field emission properties of CuO nanowires by showing a decrease in turn-on voltage, and an increase in emission current density, and stability of current-voltage curves. However, the excessive hydrogen plasma treatment made the I-V curves unstable. It was confirmed by XPS (X-ray Photoelectron Spectroscopy) analysis that hydrogen plasma treatment deoxidized CuO nanowires, thereby the work function of the nanowires decreased from 4.35 eV (CuO) to 4.1 eV (Cu). It is thought that the decrease in the work function enhanced the field emission characteristics. It is well-known that the lower the work function, the better the field emission characteristics. The results suggest that the hydrogen plasma treatment is very effective in achieving enhanced field emission properties of the CuO nanowires, and there may exist an optimal hydrogen plasma treatment condition.

Application of UV-Vis Spectroscopic Analysis for Transformer Insulating Paper Degradation (UV-Vis 분광분석에 의한 전기변압기 내 절연지 열화도 측정)

  • Kong, Hosung;Han, Hung-Gu
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.151-157
    • /
    • 2019
  • Insulated oil degradation produces charged by-products, such as acids and hydro-peroxides, which tend to reduce the insulating properties of the oil. In this study, UV-vis spectroscopy measurement technology is developed and experimentally compared with other measurement methods, such as the titration method and IR spectroscopy, to validate its ability to monitor the degradation of electrical insulating paper. The degradation characteristics of the insulating paper are appropriately represented through various types of measurement methods, such as the Tan (delta) method, $CO_2$ gas production measurement, the titration method, and IR spectroscopy. The results are demonstrated to be well comparable to a change in the fluorescence emission ratio (FER), which is defined as the shift in fluorescence intensity in the measured wavelength range, and also to the chromatic ratio, which is defined as a color shift to longer wavelength ranges. The results also show that, by using UV-vis spectroscopy, it is possible to detect the degradation of the insulating paper. This study suggests that UV-vis spectroscopy can be applied as an alternative to high-performance liquid chromatography, which is the internationally recognized measurement technology for cellulose paper degradation. The FER detector is also verified to be useful as an effective condition-monitoring device for power transformers.

Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

  • Harding, Alice K.
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.145-152
    • /
    • 2013
  • Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. Particle acceleration and high-energy emission from the polar caps is expected to occur in connection with electron-positron pair cascades. I will review acceleration and gamma-ray emission from the pulsar polar cap and associated slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting, population synthesis and phase-resolved spectroscopy.

Rest-frame optical spectroscopic properties of submillimeter galaxies

  • Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.74.3-74.3
    • /
    • 2017
  • Considering the statistical redshift distribution of the known submillimeter galaxy (SMG) population, most of the significant optical emission lines such as [OII]${\lambda}3727$, $H{\beta}$, [OIII]${\lambda}5007$, and $H{\alpha}$ are redshifted into near-infrared. Using the 3D-HST grism data that provides low resolution NIR spectroscopy over the several deep fields covered by the JCMT large program S2CLS, I investigated the properties of the optical emission lines for submm galaxies which could be used as a proxy for future optical/NIR identification and follow up of the SMGs.

  • PDF

Synthesis of Fluorescent Thiophene-derivatized Pentytiptycenes and Their Aggregate Behaviors

  • Song, Jinwoo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2010
  • Thiophene-derivatized pentiptycenes were synthesized and characterized by NMR and UV-Vis spectroscopy. Aggregation behavior of thiophene-derivatized pentiptycenes was monitored by the measurement of fluorescence. Fluorescence intensities for the thiophene-derivatized pentiptycenes and thiophene-derivatized pentiptycenes aggregates were compared. There is no shift in the maximum of the emission wavelength. In the range of water fraction between 20% and 40%, the emission intensity of thiophene-derivatized pentiptycene aggregates remains almost identical. Fluorescence efficiency incresaed by about 5 times higher when the thiophene-derivatized pentiptycenes forms the aggregates in solution.

Herschel/PACS spectroscopy of the supernova remnant G21.5-0.9

  • Cha, Heechan;An, Hongjun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.53.1-53.1
    • /
    • 2020
  • We present Herschel Space Observatory far-IR observations of the supernova remnant(SNR) G21.5-0.9. We search PACS-IFU data for 63um [O I], 88um [O III], 157um [C II] emission lines and detect the [O II] and the [C II]. We then produce emission line maps to check the spatial distribution of the elements. We compare the maps to Radio, IR-photometrics, and X-ray images in order to understand interaction of the ejecta with the Pulsar Wind Nebula(PWN) and physical environment in the SNR.

  • PDF