• Title/Summary/Keyword: Emission spectrometry

Search Result 255, Processing Time 0.031 seconds

Investigation of Acids on the Germanium Analysis by HG-ICP-AES (HG-ICP-AES를 이용한 Germanium 분석에 있어서 보조산에 대한 연구)

  • Lim, Hyuneui;Lee, Yeunhee;Kim, Sun-Tae;Kim, Young-Sang;Kim, Kang-Jin
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.34-43
    • /
    • 2001
  • The present work is aimed to evaluate the conditions of the hydride generation (HG) for germanium analysis by inductively coupled plasma (ICP)-atomic emission spectrometry (AES). Twelve different kinds of acids were used such as phosphoric, hydrochloric, nitric, sulfuric, perchloric, boric, tartaric, malic, oxalic, tannic, citric, and acetic acid. It was found that phosphoric acid yielded the maximum efficiency of hydride generation. Also, efficient hydride generation was obtined with the buffer solutions containing phosphate ions over a wide range of pH. In addition, in the presence of phosphoric acid the interference caused by metals was suppressed in the hydride generation of germanium. As the concentrations of a reducing agent and a stabilizing increased the hydride generation efficiency and the acid concentration proviaing the maximum intensity were increased. By using an analytical method developed in this study, the contents of germanium in water and rock samples were determined. The detection limit of germanium in the presence of phosphoric acid was $0.03{\mu}g/L$.

  • PDF

Biogenic Volatile Organic Compounds (BVOC) Emissions from Fruit Samples Based on Sorbent Tube Sampling and Thermal Desorption (ST-TD) Analysis (흡착튜브 - 열탈착 정량분석 기법에 기반한 과일시료로부터 자연적 휘발성유기화합물의 배출특성 연구)

  • Ahn, Jeong-Hyeon;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.757-772
    • /
    • 2013
  • In this study, a combination of sorbent tube (ST)-thermal desorption (TD)-gas chromatography (GC)-mass spectrometry (MS) was used for quantitative analysis of liquid phase standards of 10 BVOC ((1) (+)-${\alpha}$-pinene, (2) (+)-${\beta}$-pinene, (3) ${\alpha}$-phellandrene, (4) (+)-3-carene, (5) ${\alpha}$-terpinene, (6) p-cymene, (7) (R)-(+)-limonene, (8) ${\gamma}$- terpinene, (9) myrcene, and (10) camphene). The results of BVOC calibration yielded comparatively stable pattern with response factor (RF) of 23,560~50,363 and coefficient of determination ($R^2$) of 0.9911~0.9973. The method detection limit (MDL) of BVOC was estimated at 0.03~0.06 ng with the reproducibility of 1.30~5.13% (in terms of relative standard error (RSE)). Emissions of BVOC were measured from four types of fruit samples ((1) tangerine (TO), (2) tangerine peel (TX), (3) strawberry (SO), and (4) sepals of strawberry (SX)). The sum of BVOC flux (${\sum}flux$ (BVOC) in ng/hr/g) for each sample was seen on the descending order of (1) TX=291,614, (2) TO=2,190, (3) SO=1,414, and (4) SX=2,093. If the results are compared between the individual components, the highest flux was seen from (R)-(+)-limonene (265,395 ng/hr/g) from TX sample.

Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete

  • Kim, Hyun Jung;Eom, Hyo Jung;Park, Chulwoo;Jung, Jaejoon;Shin, Bora;Kim, Wook;Chung, Namhyun;Choi, In-Geol;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.540-548
    • /
    • 2016
  • Microbially induced calcium carbonate precipitation (CCP) is a long-standing but re-emerging environmental engineering process for production of self-healing concrete, bioremediation, and long-term storage of CO2. CCP-capable bacteria, two Bacillus strains (JH3 and JH7) and one Sporosarcina strain (HYO08), were isolated from two samples of concrete and characterized phylogenetically. Calcium carbonate crystals precipitated by the three strains were morphologically distinct according to field emission scanning electron microscopy. Energy dispersive X-ray spectrometry mapping confirmed biomineralization via extracellular calcium carbonate production. The three strains differed in their physiological characteristics: growth at alkali pH and high NaCl concentrations, and urease activity. Sporosarcina sp. HYO08 and Bacillus sp. JH7 were more alkali- and halotolerant, respectively. Analysis of the community from the same concrete samples using barcoded pyrosequencing revealed that the relative abundance of Bacillus and Sporosarcina species was low, which indicated low culturability of other dominant bacteria. This study suggests that calcium carbonate crystals with different properties can be produced by various CCP-capable strains, and other novel isolates await discovery.

Relationships Between Cadmium, Copper, Mercury, Zinc Levels and Metallothionein in the Liver and Kidney Cortex of Korean (한국인 간장 및 신장피질에 함유된 카드뮴, 구리, 수은, 아연 함량과 메탈로치오나인과의 관계)

  • Lee Sang Ki;Yoo Young Chan;Yun Yeo Pyo;Yang Ja YouL;Oh Seung Min;Chung Kyu Hyuck
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.4
    • /
    • pp.383-388
    • /
    • 2004
  • In order to elucidate the relationships between cadmium, copper, mercury, zinc levels and metallothionein in the liver and kidney cortex of Korean, the levels of Cd, Zn, Hg, Cu and metallothionein (MT) were determined in the kidney cortex and liver of 50 subjects deceased in the period of January-November, 2001 in the area of Seoul and Gyeonggi Province of Korea. The mean age of the population studied was 36.3+/-12.3 years. The tissues were digested with microwave digestion system and the elements were determined by inductively coupled plasma atomic emission spectrometry. MT was determined by the Cd-hemoglobin affinity assay. The determined levels (mean+/-SD) were: 33.9+/-18.9 micrograms Cd/g wet weight; 47.5+/-12.6 micrograms Zn/g wet weight; 2.5+/-0.57 microgram Cu/g wet weight; 0.26+/-0.31 micrograms Hg/g wet weight, 4.0+/-3.1 mg MT/g wet weight in renal cortex and 2.5+/-1.9 micrograms Cd/g wet weight; 46.9+/-15.0 micrograms Zn/g wet weight; 6.2+/-2.5 micrograms Cu/g wet weight; 0.10+/-0.15 micrograms Hg/g wet weight, 0.92+/-0.57 mg MT/g wet weight in the liver. Positive relationships between Cd and MT, sum of four divalent metal and MT in the kidney cortex were observed. No other correlation was found between Cu and MT, Hg and MT, Zn and MT in either organs.

High Conductivity of Transparent SWNT Films on PET by Ionic Doping

  • Min, Hyung-Seob;Kim, Sang-sig;Choi, Won-Kook;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.65-65
    • /
    • 2011
  • Single-well carbon nanotubes (SWNT) have been proposed as a promising candidate for various applications owing to their excellent properties. In particular, their fascinating electrical and mechanical properties could provide a new area for the development of advanced engineering materials. A transparent conductive thin film (TCF) has increased for applications such as liquid crystal displays, touch panels, and flexible displays. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. But, a bundle of CNTs has different electrical properties than their individual counterparts. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. Results, we show that 97 ${\Omega}$/> sheet resistance can be achieved with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after ionic doping treatments were discussed.

  • PDF

Microstructure investigation and component analysis of iron weapons found at Hadong-gun, Kyungnam Province (경남 하동군 발견 철제무구류의 금속조직 조사 및 성분분석)

  • Yu, Jae-Eun;Go, Hyeoung-Sun;Hwong, Jin-Ju
    • 보존과학연구
    • /
    • s.21
    • /
    • pp.177-206
    • /
    • 2000
  • In the study of iron artifacts, microstructure investigation is an indispensable step to find out the manufacturing method and skill. The iron weapons that we have excavated and investigated at the ruins of Gohyun Castle site, Hadong-gun, Kyungnam Province are traced to the era of Choson Dynasty. By sampling specimens of some artifacts, we have made microstructure investigation and component analysis of them. For microstructure investigation we used metallographic microscopes, and for component analysis we used the methods of C/S analysis and Inductively coupled plasma emission spectrometry (ICP) analysis which is designed to verify components and contenets of a very small amount elememt. Microstructure of the artifacts is mainly divided into three parts. Inner part is Widmanstatten, a typical overheated structure, upon which we can see another part with fine grains and with extremely small quantities of carbon. And on the surface, there is a carbonized part. When the shape is formed through forging process at a high temperature the carbon content of the surface is getting down and the grains come to be finer. Next, carbonizing process is to be done for hardening the surface, which is followed by cooling process. Cooling rates seem to be different from artifacts to artifacts. All artifacts have clearly distinguishable grain boundaries in their unique structure. Since this kind of structure is rarely found, it seems to offer a clue to find out the manufacturing method. The outcome of component analysis is almost the same with that of microstructure investigation. As is demonstrated by C/S analysis, carbon content is 0.39-1.24% and sulfur is contained 0.0005-0.010%.

  • PDF

The Antimutagenic Activity of Sulfated Alginate and Its Effect on the Growth of Lactobacillus acidophillus (황 흡착 알긴산의 Lactobacillus acidophillus 성장에 미치는 영향 및 항 돌연변이 작용)

  • 강경금;박난희;김정목
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.757-761
    • /
    • 2004
  • The alginate extracted from Hizikia fusiform by the acid alkali soluble alginate (AASA) extraction method was reacted with Na$_2$SO$_4$. The amount of sulfate absorbed in the 3% alginate solution was determined about 18,435 ppm by inductively coupled plasma-atomic emission spectrometry. Both alginate and S-alginate stimulated the growth of Lactobacillus acidophilus in MRS broth and peptone water medium. The addition of S-alginate to the media showed the higher bacterial numbers than alginate supplement. There was no mutagenic activity of S-alginate in the Ames test using the Salmonella Typhimurium TA98 and TA100 strains. The S-alginate showed suppressive effect against 2-NF and MMS of mutagens.

A comparative evaluation of $CO_2$ and erbium-doped yttrium aluminium garnet laser therapy in the management of dentin hypersensitivity and assessment of mineral content

  • Belal, Mahmoud Helmy;Yassin, Abdulaziz
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.5
    • /
    • pp.227-234
    • /
    • 2014
  • Purpose: Dentin hypersensitivity is a potential threat to oral health. Laser irradiation may provide reliable and reproducible treatment but remains controversial. The present study aimed to evaluate the effects of $CO_2$ or erbium-doped yttrium aluminium garnet (Er:YAG) laser therapy, and to assess mineral content. Methods: Eighteen human single-rooted teeth affected with advanced periodontitis were obtained. Buccal and lingual surfaces were planed to form 36 specimens. Ethylenediaminetetraacetic acid gel (24%) was applied to remove the smear layer and simulate hypersensitive teeth. The experimental groups were: group 1, control (no irradiation); group 2, $CO_2$ laser (repetitive pulsed mode, 2 W, $2.7J/cm^2$); and group 3, Er:YAG laser (slight contact mode, 40 mJ/pulse and 10 Hz). To evaluate dentinal tubule occlusion, six specimens per group (2-mm thickness) were prepared and observed using scanning electron microscopy (SEM) for calculation of the occlusion percentage. To evaluate the mineral content, six specimens per group (0.6-mm thickness) were used, and then the levels of Ca, K, Mg, Na, and P were measured by inductively coupled plasma-atomic emission spectrometry. In addition, the surface temperature of the specimens during laser irradiation was analyzed by a thermograph. Results: The SEM photomicrographs indicated melted areas around exposed dentinal tubules and a significantly greater percentage of tubular occlusion in the $CO_2$ and Er:YAG laser groups than the control, and in the Er:YAG group than the $CO_2$ laser group. In addition, no significant differences were noted among the experimental groups for the mineral elements analyzed. The $CO_2$ laser group showed an evident thermal effect compared to the Er:YAG group. Conclusions: $CO_2$ and Er:YAG laser are effective in treating dentin hypersensitivity and reducing its symptoms. However, the Er:YAG laser has a more significant effect; thus, it may constitute a useful conditioning item. Furthermore, neither $CO_2$ nor Er:YAG lasers affected the compositional structure of the mineral content.

Biomonitoring of Metal Exposure During Additive Manufacturing (3D Printing)

  • Ljunggren, Stefan A.;Karlsson, Helen;Stahlbom, Bengt;Krapi, Blerim;Fornander, Louise;Karlsson, Lovisa E.;Bergstrom, Bernt;Nordenberg, Eva;Ervik, Torunn K.;Graff, Pal
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.518-526
    • /
    • 2019
  • Background: Additive manufacturing (AM) is a rapidly expanding new technology involving challenges to occupational health. Here, metal exposure in an AM facility with large-scale metallic component production was investigated during two consecutive years with preventive actions in between. Methods: Gravimetric analyzes measured airborne particle concentrations, and filters were analyzed for metal content. In addition, concentrations of airborne particles <300 nm were investigated. Particles from recycled powder were characterized. Biomonitoring of urine and dermal contamination among AM operators, office personnel, and welders was performed. Results: Total and inhalable dust levels were almost all below occupational exposure limits, but inductively coupled plasma mass spectrometry showed that AM operators had a significant increase in cobalt exposure compared with welders. Airborne particle concentrations (<300 nm) showed transient peaks in the AM facility but were lower than those of the welding facility. Particle characterization of recycled powder showed fragmentation and condensates enriched in volatile metals. Biomonitoring showed a nonsignificant increase in the level of metals in urine in AM operators. Dermal cobalt and a trend for increasing urine metals during Workweek Year 1, but not in Year 2, indicated reduced exposure after preventive actions. Conclusion: Gravimetric analyses showed low total and inhalable dust exposure in AM operators. However, transient emission of smaller particles constitutes exposure risks. Preventive actions implemented by the company reduced the workers' metal exposure despite unchanged emissions of particles, indicating a need for careful design and regulation of the AM environments. It also emphasizes the need for relevant exposure markers and biomonitoring of health risks.

유도결합 $Cl_2/CHF_3, Cl_2/CH_4, Cl_2/Ar $플라즈마를 이용한 InGaN 건식 식각 반응 기구 연구

  • 이도행;김현수;염근영;이재원;김태일
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.249-249
    • /
    • 1999
  • GaN과 같은 III-nitride 반도체 관한 식각 기술의 연구는 blue-emitting laser diode(LD)를 위한 경면(mirror facet)의 형성뿐만아니라 새로운 display 용도의 light emitting diodes (LED), 고온에서 작동되는 광전소자 제조 등에도 그 중요성이 증대되고 있다. 최근에는 III-nitride 물질의 높은 식각속도와 미려하고 수직한 식각형상을 이루기 위하여 ECR(Electron Cyclotron Resonance)이나 ICP(Inductively Coupled Plasma)와 같은 고밀도 플라즈마 식각과 CAIBE(Chemically assisted ion beam etching)를 이용한 연구가 진행되고 있다. 현재 제조되어 지고 있는 LED 및 LD와 같은 광소자의 구조의 대부분은 p-GaN/AlGaN/InGaN(Q.W)/AlGaN/n-GaN 와 같은 여러 층의 형태로 이루어져 있다. 이중 InGaN는 광소자나 전자소자의 특성에 영향을 주는 가장 중요한 부분으로써 현재까지 보고된 식각연구는 undoped GaN에 대부분 집중되고 있고 이에 비해 소자 특성에 핵심을 이루는 InGaN의 식각특성에 관한 연구는 미흡한 상황이다. 본 연구에서는 고밀도 플라즈마원인 ICP 장비를 이용하여 InGaN를 식각하였고, 식각에는 Cl2/CH4, Cl2/Ar 플라즈마를 사용하였다. InGaN의 식각특성에 영향을 미치는 플라즈마의 특성을 관찰하기 위하여 quadrupole mass spectrometry(QMS)와 optical emission spectroscopy(PES)를 사용하였다. 기판 온도는 5$0^{\circ}C$, 공정 압력은 5,Torr에서 30mTorr로 변화시켰고 inductive power는 200~800watt, bias voltage는 0~-200voltage로 변화시켰으며 식각마스크로는 SiO2를 patterning 하여 사용하였다. n-GaN, p-GaN 층 이외에 광소자 제조시 필수적인 InGaN 층을 100% Cl2로 식각한 경우에 InGaN의 식각속도가 GaN에 비해 매우 낮은 식각속도를 보였다. Cl2 gas에 소량의 CH4나 Ar gas를 첨가하는 경우와 공정압력을 감소시키는 경우 식각속도는 증가하였고, Cl2/10%Ar 플라즈마에서 공정 압력을 감소시키는 경우 식각속도는 증가하였고, Cl2/10%CHF3 와 Cl2/10%Ar 플라즈마에서 공정압력을 15mTorr로 감소시키는 경우 InGaN과 GaNrks의 선택적인 식각이 가능하였다. InGaN의 식각속도는 Cl2/Ar 플라즈마의 이온에 의한 Cl2/CHF3(CH4) 플라즈마에서의 CHx radical 형성에 의하여 증가하는 것으로 사료되어 진다.

  • PDF