Browse > Article
http://dx.doi.org/10.4014/jmb.1511.11008

Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete  

Kim, Hyun Jung (Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University)
Eom, Hyo Jung (Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University)
Park, Chulwoo (Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University)
Jung, Jaejoon (Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University)
Shin, Bora (Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University)
Kim, Wook (Department of Biotechnology, Korea University)
Chung, Namhyun (Department of Biotechnology, Korea University)
Choi, In-Geol (Department of Biotechnology, Korea University)
Park, Woojun (Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.3, 2016 , pp. 540-548 More about this Journal
Abstract
Microbially induced calcium carbonate precipitation (CCP) is a long-standing but re-emerging environmental engineering process for production of self-healing concrete, bioremediation, and long-term storage of CO2. CCP-capable bacteria, two Bacillus strains (JH3 and JH7) and one Sporosarcina strain (HYO08), were isolated from two samples of concrete and characterized phylogenetically. Calcium carbonate crystals precipitated by the three strains were morphologically distinct according to field emission scanning electron microscopy. Energy dispersive X-ray spectrometry mapping confirmed biomineralization via extracellular calcium carbonate production. The three strains differed in their physiological characteristics: growth at alkali pH and high NaCl concentrations, and urease activity. Sporosarcina sp. HYO08 and Bacillus sp. JH7 were more alkali- and halotolerant, respectively. Analysis of the community from the same concrete samples using barcoded pyrosequencing revealed that the relative abundance of Bacillus and Sporosarcina species was low, which indicated low culturability of other dominant bacteria. This study suggests that calcium carbonate crystals with different properties can be produced by various CCP-capable strains, and other novel isolates await discovery.
Keywords
Calcium carbonate; Bacillus; Sporosarcina; biomineralization; concrete;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Achal V, Pan X, Fu Q, Zhang D. 2012. Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. J. Hazard. Mater. 30: 201-202.
2 Achal V, Pan X. 2011. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr. Microbiol. 62: 894-902.   DOI
3 Bains A, Dhami NK, Mukherjee A, Reddy MS. 2015. Influence of expolymeric materials on bacterially induced mineralization of carbonates. Appl. Biochem. Biotechnol. 175: 3531-3541.   DOI
4 Cho Y, Mahanty B, Kim CG. 2015. Effect of surfactants on CO2 biomineralization with Sporosarcina pasteurii and Bacillus megaterium. Water Air Soil Pollut. 226: 2245.   DOI
5 Chou C-W, Seagren EA, Aydilek AH, Lai M. 2011. Biocalcification of sand through ureolysis. J. Geotech. Geoenviron. Eng. 137: 1179-1189.   DOI
6 Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261.   DOI
7 De Muynck W, Leuridan S, Van Loo D, Verbeken K, Cnudde V, De Belie N, Verstraete W. 2011. Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl. Environ. Microbiol. 77: 6808-6820.   DOI
8 Cuezva S, Fernandez-Cortes A, Porca E, Paši L, Jurado V, Hernandez-Marine M, et al. 2012. The biogeochemical role of Actinobacteria in Altamira Cave, Spain. FEMS Microbiol. Ecol. 81: 281-290.   DOI
9 Daskalakis MI, Magoulas A, Kotoulas G, Catsikis I, Bakolas A, Karageorgis AP, et al. 2013. Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone. J. Appl. Microbiol. 115: 409-423.   DOI
10 De Muynck W, De Belie N, Verstraete W. 2010. Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36: 118-136.   DOI
11 Decho AW. 2010. Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecol. Eng. 36: 137-144.   DOI
12 Dhami NK, Reddy MS, Mukherjee A. 2013. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J. Microbiol. Biotechnol. 23: 707-714.   DOI
13 Johnston MD, Muench BA, Banks ED, Barton HA. 2012. Human urine in Lechuguilla Cave: the microbiological impact and potential for bioremediation. J. Cave Karst. Stud. 74: 278-291.   DOI
14 Ercole C, Bozzelli P, Altieri F, Cacchio P, Del Gallo M. 2012. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria. Microsc. Microanal. 18: 829-839.   DOI
15 Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW. 2000. Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol. J. 17: 305-318.   DOI
16 Gaylarde CC, Gaylarde PM, Neilan BA. 2012. Endolithic phototrophs in built and natural stone. Curr. Microbiol. 65: 183-188.   DOI
17 Hong H, Ko HJ, Choi IG, Park W. 2013. Previously undescribed plasmids recovered from activated sludge confer tetracycline resistance and phenotypic changes to Acinetobacter oleivorans DR1. Microb. Ecol. 67: 369-379.   DOI
18 Jimenez-Lopez C, Rodriguez-Navarro C, Piñar G, Carrillo-Rosúa FJ, Rodriguez-Gallego M, Gonzalez-Muñoz MT. 2007. Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 68: 1929-1936.   DOI
19 Jiménez G, Urdiain M, Cifuentes A, López-López A, Blanch AR, Tamames J, et al. 2013. Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Syst. Appl. Microbol. 36: 383-391.   DOI
20 Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36: 230-235.   DOI
21 Kwon SW, Kim BY, Song J, Weon HY, Schumann P, Tindall BJ, et al. 2007. Sporosarcina koreensis sp. nov. and Sporosarcina soli sp. nov., isolated from soil in Korea. Int. J. Syst. Evol. Microbiol. 57: 1694-1698.   DOI
22 Jroundi F, Fernández-Vivas A, Rodriguez-Navarro C, Bedmar EJ, González-Muñoz MT. 2010. Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microb. Ecol. 60: 39-54.   DOI
23 Jroundi F, Gómez-Suaga P, Jimenez-Lopez C, González-Muñoz MT, Fernandez-Vivas MA. 2012. Stone-isolated carbonatogenic bacteria as inoculants in bioconsolidation treatments for historical limestone. Sci. Total Environ. 425: 89-98.   DOI
24 Manso S, Calvo-Torras MÁ, De Belie N, Segura I, Aguado A. 2015. Evaluation of natural colonisation of cementitious materials: effect of bioreceptivity and environmental conditions. Sci. Total Environ. 512-513: 444-453.   DOI
25 Li Q, Csetenyi L, Paton GI, Gadd GM. 2015. CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil. Environ. Microbiol. 17: 3082-3097.   DOI
26 López-Moreno A, Sepúlveda-Sánchez JD, Mercedes Alonso Guzmán EM, Le Borgne S. 2014. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates. Biofouling 30: 547-560.   DOI
27 Mansor M, Hamilton TL, Fantle MS, Macalady JL. 2015. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing. Front. Microbiol. 6: 822.   DOI
28 Okyay TO, Rodrigues DF. 2013. High throughput colorimetric assay for rapid urease activity quantification. J. Microbiol. Methods 95: 324-326.   DOI
29 Marvasi M, Visscher PT, Perito B, Mastromei G, Casillas-Martínez L. 2010. Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol. Ecol. 71: 341-350.   DOI
30 Mitchell AC, Dideriksen K, Spangler LH, Cunningham AB, Gerlach R. 2010. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping. Environ. Sci. Technol. 44: 5270-5276.   DOI
31 Rothenstein D, Baier J, Schreiber TD, Barucha V, Bill J. 2012. Influence of zinc on the calcium carbonate biomineralization of Halomonas halophila. Aquat. Biosyst. 8: 31.   DOI
32 Okyay TO, Rodrigues DF. 2015. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation. FEMS Microbiol. Ecol. 91: fiv017.   DOI
33 Phillips AJ, Gerlach R, Lauchnor E, Mitchell AC, Cunningham AB, Spangler L. 2013. Engineered applications of ureolytic biomineralization: a review. Biofouling 29: 715-733.   DOI
34 Rawlings DE, Dew D, du Plessis C. 2003. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol. 21: 38-44.   DOI
35 Salman V, Yang T, Berben T, Klein F, Angert E, Teske A. 2015. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett salt marsh. ISME J. 9: 2503-2514.   DOI
36 Sarayu K, Lyer NR, Murthy AR. 2014. Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials - a review. Appl. Biochem. Biotechnol. 172: 2308-2323.   DOI
37 Wang L, Nilsen-Hamilton M. 2012. Biomineralization proteins: from vertebrates to bacteria. Front. Biol. 8: 234-246.   DOI
38 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.   DOI
39 Sellstedt A, Richau KH. 2013. Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol. Lett. 342: 179-186.   DOI
40 Sghaier H, Hezbri K, Ghodhbane-Gtari F, Pujic P, Sen A, Daffonchio D, et al. 2015. Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus andGeodermatophilus obscurus proteogenomes. ISME J. 10: 21-29.   DOI
41 Silva-Castro GA, Uad I, Gonzalez-Martinez A, Rivadeneyra A, Gonzalez-Lopez J, Rivadeneyra MA. 2015. Bioprecipitation of calcium carbonate crystals by bacteria isolated from saline environments grown in culture media amended with seawater and real brine. Biomed. Res. Int. 2015: 816102.   DOI
42 Tsuda K, Nagano H, Ando A, Shima J, Ogawa J. 2015. Isolation and characterization of psychrotolerant endospore-forming Sporosarcina species associated with minced fish meat (surimi). Int. J. Food Microbiol. 199: 15-22.   DOI
43 Verma N, Singh NA, Kumar N, Raghu HV. 2013. Screening of different media for sporulation of Bacillus megaterium. J. Microb. Res. Rev. 1: 68-73.
44 Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267.   DOI
45 Zippel B, Neu TR. 2011. Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis. Appl. Environ. Microbiol. 77: 505-516.   DOI
46 Wei S, Cui H, Jiang Z, Liu H, He H, Fang N. 2015. Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Braz. J. Microbiol. 46: 455-464.   DOI
47 Wu C-Y, Young L, Young D, Martel J, Young JD. 2013. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids. PLos One 8: e75501.   DOI