• Title/Summary/Keyword: Emission of $SO_2$ and $NO_X$

Search Result 86, Processing Time 0.032 seconds

Long-term Trend Analysis of NOx and SOx over in East Asia Using OMI Satellite Data and National Emission Inventories (2005-2015) (OMI 위성 자료와 국가 배출량 자료를 활용한 동아시아의 NOx, SOx 변화 장기 분석(2005-2015))

  • Seo, Jeonghyeon;Yoon, Jongmin;Choo, Gyo-Hwang;Kim, Deok-rae;Lee, Dong-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.121-137
    • /
    • 2020
  • Data from the Ozone Monitoring Instrument (OMI) satellite and national emission inventories were used in this study to analyze air quality in East Asia and estimate the impact of domestic and foreign emissions on South Korea's air quality, based on which future emissions were predicted. The concentration trends of nitrogen dioxide (NO2) and sulfur dioxide (SO2) in East Asia from 2005 to 2015 showed that both substances were highest in North East China (NEC), followed by South East China (SEC) and Seoul Metropolitan Area (SMA). The average SO2 concentration was 1.63 times higher in NEC than in SMA. Analysis on the ratios of NO2/SO2 and NOx/SOx provides an indirect picture of the effect of transboundary air pollutants on atmospheric composition in Korea. The concentration ratio of NO2/SO2 in all study areas peaked in 2013 and SMA's emission ratio of NOx/SOx increased in 2015 by over 22% from 2013. Despite the reduction in domestic emissions, the concentration-to-emission ratios (NO2/NOx, SO2/SOx) rose gradually, which implies that other factors besides domestic emissions (e.g., foreign sources, lifetime, etc.) influence air quality in SMA. We estimated future emissions of NOx and SOx in SMA to be 296.2 and 39.0 ktons in 2025 and 284.4 and 33.8 ktons in 2035, respectively. Application of the inter-comparison techniques of this study to the data from the Geostationary Environment Monitoring Instrument (GEMS) is expected to provide concrete information which can be used to improve national emission inventories and figure out factors and sources that affect domestic air quality.

Empirical Analysis on Determinants of Air Pollution in China (중국의 대기오염 배출 결정요인에 대한 경험적 분석)

  • Li, Dmitriy D.;Wang, Wen;Bae, Jeong Hwan
    • Environmental and Resource Economics Review
    • /
    • v.29 no.1
    • /
    • pp.23-45
    • /
    • 2020
  • The rapid economic growth has brought tremendous pressure on the environment and caused severe air pollution in China. This study empirically examines causes of air pollution in China. Panel-corrected standard errors procedure (PCSE) was used to analyze major determinants of increasing or reducing emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) in 30 Chinese provinces. The estimation results show that SO2 emission is mitigated as per capita regional GDP increases, but the relation between emission of NOX and per capita regional GDP is found to have an inverse N-shaped curve, which implies that emission of NOX is ultimately expected to decline with economic growth. As for increasing factors of air pollutants, electricity consumption is a significant common source of SO2 and NOX emissions. Moreover, the results show that increment of coal consumption significantly affects emission of SO2 while increase of natural gas consumption reduce emission of SO2. On the other side, investment in energy industry, and investment on treatment of waste gases are determinants of mitigating emissions of SO2, but have no impact on NOX. Consumption of diesel, truck ratio and number of vehicles increase emission of NOX. Meanwhile, higher precipitation rate is a common determinant of mitigating emissions of SO2 and NOX. Policy implications are suggested in the conclusion.

Relationship of Electricity Consumption and Emission Rate of Acidic Gases (전력소비와 산성가스 배출량과의 관계)

  • 정일록;김대곤
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.3
    • /
    • pp.131-138
    • /
    • 1995
  • As the energy consumption increases continuously, the emission amount of air pollutants is growing, and after all it can influence the global environment as welt as the regional atmosphere. So, the clean energy which emits less air pollutants should be developed and widely used to reduce emission of pollutants. Electricity, known for clean energy in the side of consumption, is not actually clean in the process of generation. Electric power is generated using fossil fuels which produce acidic gases like $SO_{2}$, $NO_{x}$, etc. The emission rates of $SO_{2}$, $NO_{x}$, $CO_{2}$ are 2g,0.78g and 1 l0g per electric power generating Ikwh. If one light(60 watt bulb) be turned off at each house for a month electricity will be saved about 1.Skillion kwh a year. This is almost the same as 4,170 tons of $SO_{2}$ and $NO_{x}$. As a result the economization of electricity will be one of the effective strategy to reduce the air pollution and to keep our life clean and comfortable.

  • PDF

Estimate of Ships Emission in Busan Port during 2009 Based on Activity (활동도를 이용한 2009년도 부산항 선박배출량 산정에 관한 연구)

  • Park, Doo-Yeol;Hwang, Cheol-Won;Jeong, Chang-Hun;Shon, Zang-Ho
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.599-610
    • /
    • 2011
  • Emission of air pollutants such as nitrogen oxides ($NO_x$), hydrocarbons (HC), $SO_2$, and particulate matter (PM) and $CO_2$ from ship during 2009 in Busan port was estimated based on activity-based method. The significant fraction (> 50%) of ship emission resulted from container and general cargo ships. Emission at port operation mode was the most dominant compared to at sea and maneuvering modes. Emission at North port was the largest source of air pollutants among ports. The magnitudes of air pollutants $NO_x$, $SO_2$, HC, $CO_2$, and PM in Busan port were $8.7{\times}10^3$, $8.23{\times}10^3$, $0.35{\times}10^3$, $4.86{\times}10^6$, and $0.67{\times}10^3$ ton/yr, respectively. The ratio of $NO_x$ to VOC is about 25. Our ship emission estimate is 2 times higher than that in CAPSS emission inventory.

A Study on the Comparison of Emission Factor Method and CEMS (Continuous Emission Monitoring System) (배출계수법과 연속자동측정법에 의한 배출량 비교 연구)

  • Jang, Kee-Won;Lee, Ju-Hyoung;Jung, Sung-Woon;Kang, Kyoung-Hee;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.410-419
    • /
    • 2009
  • Generally, air pollutant emission at workplace is estimated by two methods: indirect methods using emission factors and direct methods based on CEMS (Continuous Emission Monitoring System). CAPSS (Clean Air Policy Support System) is a representative indirect method and the national air pollutant database of Korea. However, characteristics of some workplaces may create a gap between CAPSS and CEMS data. For improving of emission data accuracy, emission data of CEMS (named CleanSYS) equipped at 138 target workplaces were compared with those of CAPSS. As a result, $SO_x$ and $PM_{10}$ emission levels obtained by CAPSS were lower than those of CleanSYS. $SO_x$ and $PM_{10}$emission ratios were 61.5% and 71.2% lower respectively, showing the biggest gaps. On the other hand, $NO_x$ emission of CAPSS was higher by 10.4%. $SO_x$ showed the biggest difference in 'Energy industry combustion' and $NO_x$ did in 'Production Process' within the SCC category. $PM_{10}$ presented a large gap in 'Manufacturing industry combustion.' The differences in $SO_x$ between the two systems occurred because some large-size facilities lack pollution controllers or efficient pollution controllers. Based on this study, CAPSS emission database of Korea will improve accuracy through adopting CEMS emission system, which enables more efficient national atmospheric policies and workplace management.

Characterization of Atmospheric Dispersion Pattern from Large Sources in Chungnam, Korea (충남지역 대형사업장의 대기오염물질 확산 특성 파악)

  • Choi, Woo Yeong;Park, Min Ha;Jung, Chang Hoon;Kim, Yong Pyo;Lee, Ji Yi
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.55-69
    • /
    • 2021
  • Chungnam region accounts for the largest SOX (22.8%) emission with the second-largest NOX (10.8%) emission in Korea due to the integration of many large industrial sources including a steel mill, coal-fired power plants, and petrochemical complex. Air pollutants emitted by large industrial sources can cause harmful problems to humans and the environment. Thus, it is necessary to understand dispersion patterns of air pollutants from large industrial sources in Chungnam to characterize atmospheric contamination in Chungnam and the surrounding area. In this study, seasonal atmospheric dispersion characteristics for SOX, NOX, and PM2.5 from ten major point sources in Chungnam were evaluated using HYSPLIT 4 model, and their contributions to SO2, NO2 concentrations in the regions near the source areas were estimated. The predictions of the HYSPLIT 4 model show a seasonal different dispersion pattern, in which air pollutants were dispersed toward the southeast in winter while, northeast in summer. In summer, due to weaker wind speed, air pollutants concentrations were higher than in winter, and they were dispersed to the metropolitan area. The local emissions of air pollutants in Taean area had a greater influence on the ambient SO2 and NO2 concentrations at Taean, whereas SOX and NOX emissions from large sources located at Seosan showed relatevely little effect on the ambient ambient SO2 and NO2 concentrations at Seosan.

A Study on the Characteristics of Solid-Fuel Combustion (고형연료의 배출특성 연구)

  • Jang, Kee-Won;Heo, Sun-Hwa;Lim, Seung-Young;Kim, Dae-Gon;Jung, Yong-Won;Kang, Dae-Il
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.351-360
    • /
    • 2017
  • In this study, we developed emission factors from solid-fuel fired combustors. In order to increase the reliability of emission factors, we conducted a joint research with the Institute of Health and Environment. As a result, PM average concentration was $8.19mg/m^3$. $SO_2$ and $NO_x$ were respectively 8.46 ppm, 50.64 ppm. Hazardous air pollutants such as Cr, Pb and Hg were detected in trace amounts continuously for 2 years in some solid-fuel fired combustors. The emission factors for the three kinds of PM, $SO_x$, $NO_x$ were developed based on the measurement data. For the PM emission factors, that of SRF was 15.93 g/kg and that of Bio-SRF was 14.18 g/kg. Compared with those of US. EPA, emission factors of this study showed the results of low values. $SO_x$ emission factors were 4.42 g/kg for SRF and 1.39 g/kg for Bio-SRF. $NO_x$ emission factors were 13.21 g/kg and 4.43 g/kg, respectively. Through the results of this study, we would support atmospheric administration policies such as the emission factor notification revision.

Development of Predictive Model for Pollutants Emission from Power Plants (발전소의 대기오염물질 배출 예측 모델 개발)

  • 김민석;김경희;이인범
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.543-550
    • /
    • 1998
  • From the power plant in a steel plant, environment pollutants such as $SO_x$, $NO_x$, CO and $CO_2$ are emitted by combustion reactions of the fuels which are by-product gases, oil and liquefied natural gas(LNG). To reduce the amounts of the pollutants, it is important to build a predictive model for the emission of the pollutants. In this paper, model that predict the amounts of generated pollutants for the used fuel is developed by using Gibbs free energy minimization method[1] with the temperature correction technique. For some data set, the calculation results from this model are compared with the real emission amounts of $SO_x$, $NO_x$, and the result of the calculation by both ASPEN PLUS which is a commercial simulation software. This model shows good results and can be applied to other power plants.

  • PDF

Simultaneous removal of $SO_X$ and $NO_X$ by wet scrubber at small and medium craft (중소형 선박의 $SO_X/NO_X$ 동시제거를 위한 습식세정시스템)

  • Cha, Yu-Joung;Lee, Ju-Yeol;Ha, Tae-Young;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.159-166
    • /
    • 2014
  • In recent years, researchers have put a considerable effort to decrease the emission of harmful gaseous pollutants to the atmosphere. In order to remove simultaneously $SO_2$ and $NO_X$ from the flue gas of small and medium-sized ship, we designed minimal wet scrubber inside a compact multistage modular system. In this study we proceed experiment of elemental technology at each stage of the scrubber. The each stage is oxidation of NO which is the main component of $NO_X$, and removal of $SO_2$, respectively. $NaClO_2$ was used to oxidize NO gas, and NaOH was used to remove $SO_2$ gas. The maximum NO conversion efficiency and the $SO_2$ removal efficiency are both indicate 100%.

Emission Estimation of Air Pollutants in Daegu (대구시 대기오염물질 배출량 산정에 관한 연구)

  • 박명희;김해동;홍정혜
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2003
  • Urban air quality is usually worse than that of rural counterpart. The contrasting atmospheric properties seem to be direct result of different urban-rural air pollutant emission. Hence, the emission estimation of air pollutants plays an important role to the atmospheric environmental management. The main purpose of this study is to find out the temporal and spatial distribution of air pollutant emission in Daegu area. For the study, the Daegu statistical yearbook and data of waste facilities and the report on traffic survey issued by Daegu metropolitan city and the statistical yearbook on the road capacity issued by the ministry of construction and transportation are used. Each item for the emission estimation is $SO_2$, CO, HC, $NO_x$, PM-10 from point, line and area source. The result were as follow; (1) The air pollutants with the highest amount of emission from the emission source is CO followed by $NO_x$, $SO_2$, PM-10, HC in descending order of magnitude. (2) The annually totaled air pollutant emission consists of 81%(73,185 ton/year) of line, 11%(9,589% ton/year) of area and 8%(7,445 ton/year) of point source in Daegu. Air polluant emission was mainly due to line sources. (3) High-emission of the air pollutants of line source appeared ariond Bukgu, Dalseonggun, Dongu and Seogu ; the areas with highway networks.