Browse > Article
http://dx.doi.org/10.7780/kjrs.2020.36.2.1.3

Long-term Trend Analysis of NOx and SOx over in East Asia Using OMI Satellite Data and National Emission Inventories (2005-2015)  

Seo, Jeonghyeon (Environmental Satellite Center, Climate and Air Quality Research Department, National Institute of Environmental Research)
Yoon, Jongmin (Environmental Satellite Center, Climate and Air Quality Research Department, National Institute of Environmental Research)
Choo, Gyo-Hwang (Environmental Satellite Center, Climate and Air Quality Research Department, National Institute of Environmental Research)
Kim, Deok-rae (Environmental Satellite Center, Climate and Air Quality Research Department, National Institute of Environmental Research)
Lee, Dong-Won (Environmental Satellite Center, Climate and Air Quality Research Department, National Institute of Environmental Research)
Publication Information
Korean Journal of Remote Sensing / v.36, no.2_1, 2020 , pp. 121-137 More about this Journal
Abstract
Data from the Ozone Monitoring Instrument (OMI) satellite and national emission inventories were used in this study to analyze air quality in East Asia and estimate the impact of domestic and foreign emissions on South Korea's air quality, based on which future emissions were predicted. The concentration trends of nitrogen dioxide (NO2) and sulfur dioxide (SO2) in East Asia from 2005 to 2015 showed that both substances were highest in North East China (NEC), followed by South East China (SEC) and Seoul Metropolitan Area (SMA). The average SO2 concentration was 1.63 times higher in NEC than in SMA. Analysis on the ratios of NO2/SO2 and NOx/SOx provides an indirect picture of the effect of transboundary air pollutants on atmospheric composition in Korea. The concentration ratio of NO2/SO2 in all study areas peaked in 2013 and SMA's emission ratio of NOx/SOx increased in 2015 by over 22% from 2013. Despite the reduction in domestic emissions, the concentration-to-emission ratios (NO2/NOx, SO2/SOx) rose gradually, which implies that other factors besides domestic emissions (e.g., foreign sources, lifetime, etc.) influence air quality in SMA. We estimated future emissions of NOx and SOx in SMA to be 296.2 and 39.0 ktons in 2025 and 284.4 and 33.8 ktons in 2035, respectively. Application of the inter-comparison techniques of this study to the data from the Geostationary Environment Monitoring Instrument (GEMS) is expected to provide concrete information which can be used to improve national emission inventories and figure out factors and sources that affect domestic air quality.
Keywords
OMI; Nitrogen dioxide ($NO_2$); Sulfur dioxide ($SO_2$); National Emission Inventory (NEI); Geostationary Monitoring Environment Spectrometer (GEMS);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Levelt, P.F., J. Joiner, J. Tamminen, J.P. Veefkind, P.K. Bhartia, D.C. Stein Zweers, B.N. Duncan, D.G. Streets, H. Eskes, R. van der A, C. McLinden, V. Fioletov, S. Carn, J. de Laat, M. DeLand, S. Marchenko, R. McPeters, J. Ziemke, D. Fu, X. Liu, K. Pickering, A, Apituley, G.G. Abad, A. Arola, F. Boersma, C.C. Miller, K. Chance, M. de Graaf, J. Hakkarainen, S. Hassinen, I. Ialongo, Q. Kleipool, N. Krotkov, C. Li, L. Lamsal, P. Newman, C. Nowlan, R. Suleiman, L.G. Tilstra, O. Torres, H. Wang, and K. Wargan, 2018. The Ozone Monitoring Instrument: overview of 14 years in space, Atmospheric Chemistry and Physics, 18: 5699-5745.   DOI
2 Li, C., J. Joiner, N.A. Krotkov, and P.K. Bhartia, 2013. A fast and sensitive new satellite $SO_2$ retrieval algorithm based on principal component analysis:Application to the ozone monitoring instrument, Geophysical Research Letters, 40(23): 6314-6318.   DOI
3 Li, C., N.A. Krotkov, and J. Joiner, 2006. OMI/Aura Sulphur Dioxide ($SO_2$) Total Column 1-orbit L2 Swath 13${\times}$24 km V003, https://doi.org/10.5067/Aura/OMI/DATA2022, Accessed on May 10, 2019.
4 Li, C., Q. Zhang, N.A. Krotkov, D.G. Streets, K. He, S.C. Tsay, and J.F. Gleason, 2010. Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the Ozone Monitoring Instrument, Geophysical Research Letters, 37:L08807.   DOI
5 Lin, W., X. Xu, Z. Ma, H. Zhao, X. Liu, and Y. Wang, 2012. Characteristics and recent trends of sulfur dioxide at urban, rural, and background sites in North China: Effectiveness of control measures, Journal of Environment Sciences, 24(1): 34-49.   DOI
6 Liu, F., S. Beirle, Q. Zhang, S. Dorner, K. He, and T. Wagner, 2016. $NO_x$ lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations, Atmospheric Chemistry and Physics, 16: 5283-5298.   DOI
7 Liu, Y., X. Chen, S. Huang, L. Tian, Y. Lu, Y. Mei, M. Ren, N. Li, L. Liu, and H. Xiang, 2015. Association between air pollutants and cardiovascular disease mortality in Wuhan, China, International Journal of Environmental Research Public Health, 12(4):3506-3516.   DOI
8 Mallik, C., S. Lal, M. Naja, D. Chand, S. Venkataramani, H. Joshi, and P. Pant, 2013. Enhanced $SO_2$ concentrations observed over northern India: role of long-range transport, International Journal of Remote Sensing, 34(8): 2749-2762.   DOI
9 Martin, R.V., A.M. Fiore, and A. van Donkelaar, 2004. Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions, Geophysical Research Letters, 31: L06120.   DOI
10 McLaren, R., P. Wojtal, J.D. Halla, C. Mihele, and J.R. Brook, 2012. A survey of $NO_2$: $SO_2$ emission ratios measured in marine vessel plumes in the Strait of Georgia, Atmospheric Environment, 46:655-658.   DOI
11 Moon, K.J., H.G. Cheo, K.H. Jeon, Y. Xiaoyang, M. Fan, D.G. Kim, H.J. Park, and J.S. Kim, 2018. Review on the Current Status and Policy on $PM_{2.5}$ in China, Journal of Korean Society for Atmospheric Environment, 34(3): 373-392 (in Korean with English abstract).   DOI
12 National Bureau of Statistics (NBS), 2006-2016. China Statistical Yearbook, http://www.stats.gov.cn/tjsj/ndsj, Accessed on Jul. 12, 2019.
13 Qu, Y., J. An, Y. He, and J. Zheng, 2016. An overview of emissions of $SO_2$ and $NO_x$ and the longrange transport of oxidized sulfur and nitrogen pollutants in East Asia, Journal of Environmental Sciences, 44: 13-25.   DOI
14 Souri, A.H., Y. Choi, W. Jeon, J.H. Woo, Q. Zhang, and J. Kurokawa, 2017. Remote sensing evidence of decadal changes in major tropospheric ozone precursors over East Asia, Journal of Geophysical Research: Atmospheres, 122(4): 2474-2492.   DOI
15 Schmidt, A., S. Leadbetter, N. Theys, E. Carboni, C.S. Witham, J.A. Stevenson, C.E. Birch, T. Thodarson, S. Turnock, S. Barsotti, L. Delaney, W. Feng, R.G. Grainger, M.C. Hort, A. Hoskuldsson, I. Ialongo, E. Ilyinskaya, T. Johannsson, P. Kenny, T.A. Mather, N.A.D. Richards, and J. Shepherd, 2015. Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014-2015 flood lava eruption at Baroarbunga (Iceland), Journal of Geophysical Research: Atmospheres, 120: 9739-9757.   DOI
16 Seinfeld, J.H. and S.N. Pandis, 2016. Atmospheric chemistry and physics: from air pollution to climate change, John Wiley and Sons, New York, NY, USA.
17 Shah, V., D.J. Jacob, K. Li, R.F. Silvern, S. Zhai, M. Liu, J. Lin, and Q. Zhang, 2020. Effect of changing $NO_x$ lifetime on the seasonality and long-term trends of satellite-observed tropospheric $NO_2$ columns over China, Atmospheric Chemistry and Physics, 20: 1483-1495.   DOI
18 Streets, D.G., T. Canty, G.R. Carmichael, B. de Foy, R.R. Dickerson, B.N. Duncan, D.P. Edwards, J.A. Haynes, D.K. Henze, M.R. Houyoux, D.J. Jacob, N.A. Krotkov, L.N. Lamsal, Y. Liu, Z. Lu, R.V. Martin, G.G. Pfister, R.W. Pinder, R.J. Salawitch, and K.J. Wecht, 2013. Emissions estimation from satellite retrievals: A review of current capability, Atmospheric Environment, 77:1011-1042.   DOI
19 Sun, W., M. Shao, C. Granier, Y. Liu, C.S. Ye, and J.Y. Zheng, 2018. Long-Term Trends of Anthropogenic $SO_2$, $NO_x$, CO, and NMVOCs Emissions in China, Earth's Future, 6: 1112-1133.   DOI
20 US EPA, Criteria Air Pollutants, https://www.epa.gov/criteria-air-pollutants, Accessed on Jun. 13, 2019.
21 World Health Organization, 2018. World health statistics 2018: monitoring health for the SDGs, sustainable development goals, World Health Organization, Geneva, Switzerland.
22 Vinken, G.C.M., K.F. Boersma, A. van Donkeelaar, and L. Zhang, 2014a. Constraints on ship $NO_x$ emissions in Europe using GEOS-Chem and OMI Satellite $NO_2$ observations, Atmospheric Chemistry Physics, 14: 1353-1369.   DOI
23 Vinken, G.C.M., K.F. Boersma, J.D. Maasakkers, M. Adon, and R.V. Martin, 2014b. Worldwide biogenic soil $NO_x$ emissions inferred from OMI $NO_2$ observations, Atmospheric Chemistry Physics, 14: 10363-10381.   DOI
24 Wang, S.X., B. Zhao, S.Y. Cai, Z. Klimont, C.P. Nielsen, T. Morikawa, J.H. Woo, Y. Kim, X. Fu, J.Y. Xu, J.M. Hao, and K.B. He, 2014, Emission trends and mitigation options for air pollutants in East Asia, Atmospheric Chemistry Physics, 14: 6571-6603.   DOI
25 Zheng, B., D. Tong, M. Li, F. Liu, C. Hong, G. Geng, H. Li, X. Li, L. Peng, J. Qi, L. Yan, Y. Zhang, H. Zhao, Y. Zheng, K. He, and Q. Zhang, 2018. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmospheric Chemistry and Physics, 18(19):14095-14111.   DOI
26 Calkins, C., C. Ge, J. Wang, M. Anderson, and K. Yang, 2016. Effects of meteorological conditions on sulfur dioxide air pollution in the North China plain during winters of 2006-2015, Atmospheric Environment, 147: 296-309.   DOI
27 Beirle, S., K.F. Boersma, U. Platt, M.G. Lawrence, and T. Wagner, 2011. Megacity Emissions and Lifetimes of Nitrogen Oxides Probed from Space, SCIENCE, 333(6050): 1737-1739.   DOI
28 Beirle, S., U. Platt, M. Wenig, and T. Wagner, 2003. Weekly cycle of $NO_2$ by GOME measurements: a signature of anthropogenic sources, Atmospheric Chemistry and Physics, 3: 2225-2232.   DOI
29 Boersma, F., E. Bucsela, E. Brinksma, and J.F. Gleason, 2002. $NO_2$, In: Chance, K. (Ed.), OMI Algorithm Theoretical Basis Document: OMI Trace Gas Algorithms, Smithsonian Astrophysical Observatory, Cambridge, MA, USA, vol. IV, ATBD-OMI-04, version 2.0, pp. 13-36.
30 Bucsela, E.J., N.A. Krotkov, E.A. Celarier, L.N. Lamsal, W.H. Swartz, P.K. Bhartia, K.F. Boersma, J.P. Veefkind, J.F. Gleason, and K.E. Pickering, 2013. A new stratospheric and tropospheric $NO_2$ retrieval algorithm for nadir-viewing satellite instruments: applications to OMI, Atmospheric Measurement Techniques, 6: 2607-2626.   DOI
31 Cayetano, M. G., Y.J. Kim, J.S. Jung, T. Batmunkh, K.Y. Lee, S.Y. Kim, K.C. Kim, D.G. Kim, S.J. Lee, J.S. Kim, and I.S. Chang, 2011. Observed Chemical Characteristics of Long-Range Transported Particles at a Marine Background Site in Korea, Journal of the Air & Waste Management Association, 61(11): 1192-1203.   DOI
32 Chin, M., R.B. Rood, S.J. Lin, J.F. Muller, and A.M. Thompson, 2000. Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties, Journal of Geophysical Research: Atmospheres, 105(D20):24671-24687.   DOI
33 Clean Air Policy Support System (CAPSS), http://airemiss.nier.go.kr/mbshome/mbs/airemiss/index.do, Accessed on Jul. 12, 2019.
34 Cofala, J., J. Borken-Kleefeld, C. Heyes, Z. Klimont, P. Rafaj, R. Sander, W. Schopp, and M. Amann, 2011. Emissions of Air Pollutants for the World Energy Outlook 2011 Energy Scenarios, IIASA, Laxenburg, Austria.
35 Kajino, M., K. Sato, Y. Inomata, and H. Ueda, 2013. Source-receptor relationships of nitrate in Northeast Asia and influence of sea salt on the long-range transport of nitrate, Atmospheric Environment, 79: 67-78.   DOI
36 Gu, A., F. Teng, and X. Feng, 2016. Effect of pollution control measures on carbon emission reduction in China: evidence from the 11th and 12th Five-Year plans, Climate Policy, 18(2): 198-209.   DOI
37 Hoffmann, L., T. Ro$\ss$bler, S. Griessbach, Y. Heng, and O. Stein, 2016. Lagrangian transport simulations of volcanic sulfur dioxide emissions: Impact of meteorological data products, Journal of Geophysical Research: Atmospheres, 121: 4651-4673.   DOI
38 Hong, S.C., Y.S. Lyu, S.K. Kim, J.H. Seo, H.K. Kim, J.S. Hong, D.R. Kim, and S.R. Lim, 2016. Development of the Optimal Climate Change Scenario of East Asia for Minimizing the risk in the Korean Peninsula(III), National Institute of Environmental Research, Incheon, Korea (in Korean with English abstract).
39 Kamarehie, B., M. Ghaderpoori, A. Jafari, M. Karami, A. Mohammadi, K. Azarshad, A. Ghaderpoury, A. Alinejad, and N. Noorizadeh, 2017. Quantification of health effects related to $SO_2$ and $NO_2$ pollutants by using air quality model, Journal of Advances in Environmental Health Research, 5(1): 44-50.
40 Khattak, P., M.F. Khokhar, and S.A. Khan, 2014. Trans-Boundary Volcanic $SO_2$ Detected over Pakistan from Satellite Observations during the Time Period 2004-2012, Aerosol and Air Quality Research, 14: 1543-1557.   DOI
41 Kim, Y.P., 2017. Research and Policy Directions against Ambient Fine Particles, Journal of Korean Society for Atmospheric Environment, 33(3): 191-204 (in Korean with English abstract).   DOI
42 Krueger, A.J., N.A. Krotkov, S. Datta, D. Flittner, and O. Dubovik, 2002. $SO_2$, In: Chance, K. (Ed.), OMI Algorithm Theoretical Basis Document:OMI Trace Gas Algorithms, vol. IV, ATBDOMI-04, version 2.0, pp. 49-59.
43 Krotkov, N.A., C.A. McLinden, C. Li, L.N. Lamsal, E.A. Celarier, S.V. Marchenko, W.H. Swartz, E.J. Bucsela, J. Joiner, B.N. Duncan, K.F. Boersma, J.P. Veefkind, P.F. Levelt, V.E. Fioletov, R. R. Dickerson, H. He, Z. Lu, and D.G. Streets., 2016. Aura OMI observations of regional $SO_2$ and $NO_2$ pollution changes from 2005 to 2015, Atmospheric Chemistry and Physics, 16(7):4605-4629.   DOI
44 Krotkov, N.A., L.N. Lamsal, E.A. Celarier, W.H. Swartz, S.V. Marchenko, E.J. Bucsela, K.L. Chan, M. Wenig, and M. Zara, 2017. The version 3 OMI $NO_2$ standard product, Atmospheric Measurement Techniques, 10(9): 3133-3149.   DOI
45 Krotkov, N.A., L.N. Lamsal, S.V. Marchenko, E.A. Celarier, E.J. Bucsela, W.H. Swartz, and P. Veefkind, 2018. OMI/Aura Nitrogen Dioxide ($NO_2$) Total and Tropospheric Colum 1-orbit L2 Swath 13${\times}$24 km V003, https://doi.org/10.5067/Aura/OMI/DATA2017, Accessed on May 10, 2019.
46 Lee, C., R.V. Martin, A. van Donkelaar, H. Lee, R.R. Dickerson, J.C. Hains, N. Krotkov, A. Richter, K. Vinnikov, and J.J. Schwab, 2011. $SO_2$ emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations, Journal of Geophysical Research, 116(D6), doi:10.1029/2010JD014758.