• Title/Summary/Keyword: Emission model

Search Result 1,697, Processing Time 0.033 seconds

Effects of Emission from Seoul Metropolitan Area on Air Quality of Surrounding Area Using MESOPUFF II Model (MESOPUFF II모델을 이용한 서울시 $SO_2$배출량이 주변지역 대기질에 미치는 영향 분석)

  • 조창래;이종범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.563-576
    • /
    • 1998
  • To study the influences of the emission sources during lune 13∼15 1997 in Seoul, MESOPVFF II model has been used. The MESOPVFF II model includes terrain effects, chemical transformation and removal processes. Data of 20 surface meteorological stations and the upper air station on mid-west area in Korea were used as a DWM (Diagnostic Wind Model) input data. This model is likely to be applicable because the predicted SO2 concentration was well matched with measured 502 concentration in Seoul and Kyonggido. In generally air pollutants in Seoul have major influence on the other cities but the result of modeling appeared also air pollutants of the other cities influence on Seoul. Finally, in the case of calculating the air quality by diffusion model, the influences of air pollutants emitted in metropolitan area as well as the emission rate in modeling area should be considered.

  • PDF

A CFD Study of Near-field Odor Dispersion around a Cubic Building from Rooftop Emissions

  • Jeong, Sang Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.153-164
    • /
    • 2017
  • Odor dispersion around a cubic building from rooftop odor emissions was investigated using computational fluid dynamics (CFD). The Shear Stress Transport (here after SST) $k-{\omega}$ model in FLUENT CFD code was used to simulate the flow and odor dispersion around a cubic building. The CFD simulations were performed for three different configurations of cubic buildings comprised of one building, two buildings or three buildings. Five test emission rates were assumed as 1000 OU/s, 2000 OU/s, 3000 OU/s, 4000 OU/s and 5000 OU/s, respectively. Experimental data from wind tunnels obtained by previous studies are used to validate the numerical result of an isolated cubic building. The simulated flow and concentration results of neutral stability condition were compared with the wind tunnel experiments. The profile of streamline velocity and concentration simulation results show a reasonable level of agreement with wind tunnel data. In case of a two-building configuration, the result of emission rate 1000 OU/s illustrates the same plume behavior as a one-building configuration. However, the plume tends to the cover rooftop surface and windward facet of a downstream building as the emission rate increases. In case of a three-building configuration, low emission rates (<4000 OU/s) form a similar plume zone to that of a two-building configuration. However, the addition of a third building, with an emission rate of 5000 OU/s, creates a much greater odorous plume zone on the surface of second building in comparison with a two-building configuration.

A new model and testing verification for evaluating the carbon efficiency of server

  • Liang Guo;Yue Wang;Yixing Zhang;Caihong Zhou;Kexin Xu;Shaopeng Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2682-2700
    • /
    • 2023
  • To cope with the risks of climate change and promote the realization of carbon peaking and carbon neutrality, this paper first comprehensively considers the policy background, technical trends and carbon reduction paths of energy conservation and emission reduction in data center server industry. Second, we propose a computing power carbon efficiency of data center server, and constructs the carbon emission per performance of server (CEPS) model. According to the model, this paper selects the mainstream data center servers for testing. The result shows that with the improvement of server performance, the total carbon emissions are rising. However, the speed of performance improvement is faster than that of carbon emission, hence the relative carbon emission per unit computing power shows a continuous decreasing trend. Moreover, there are some differences between different products, and it is calculated that the carbon emission per unit performance is 20-60KG when the service life of the server is five years.

Machine-learning Approaches with Multi-temporal Remotely Sensed Data for Estimation of Forest Biomass and Forest Reference Emission Levels (시계열 위성영상과 머신러닝 기법을 이용한 산림 바이오매스 및 배출기준선 추정)

  • Yong-Kyu, Lee;Jung-Soo, Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.603-612
    • /
    • 2022
  • The study aims were to evaluate a machine-learning, algorithm-based, forest biomass-estimation model to estimate subnational forest biomass and to comparatively analyze REDD+ forest reference emission levels. Time-series Landsat satellite imagery and ESA Biomass Climate Change Initiative information were used to build a machine-learning-based biomass estimation model. The k-nearest neighbors algorithm (kNN), which is a non-parametric learning model, and the tree-based random forest (RF) model were applied to the machine-learning algorithm, and the estimated biomasses were compared with the forest reference emission levels (FREL) data, which was provided by the Paraguayan government. The root mean square error (RMSE), which was the optimum parameter of the kNN model, was 35.9, and the RMSE of the RF model was lower at 34.41, showing that the RF model was superior. As a result of separately using the FREL, kNN, and RF methods to set the reference emission levels, the gradient was set to approximately -33,000 tons, -253,000 tons, and -92,000 tons, respectively. These results showed that the machine learning-based estimation model was more suitable than the existing methods for setting reference emission levels.

Numerical Calculation Study on the Generalized Electron Emission Phenomenon

  • Kim, Hee-Tae;Yu, Soon-Jae
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.158-163
    • /
    • 2009
  • There are two kinds of well-known electron emissions from metal: field and thermionic emission. For thermionic emission, electrons come out of a metal due to the thermal energy, whereas for field emission, electrons tunnel out of a metal through the strong electric field. In this study, the most general electron emission caused by the temperature and electric field with a free electron gas model was considered. The total current density of electron emission comes from the field emission effect, where the electron energy is lower than vacuum, and from the thermionic-emission effect, where the electron energy is higher than vacuum. The total current density of electron emission is shown as a function of the temperature for a constant electric field, and as a function of the electric field for a constant temperature.

Hot Gas Analysis of Circuit Breakers By Combining Partial Characteristic Method with Net Emission Coefficient

  • Park, Sang-Hun;Bae, Chae-Yoon;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.115-121
    • /
    • 2003
  • This paper proposes a radiation model, which considers radiation transport as an important component in hot gas analysis. This radiation model is derived from combining the method of partial characteristics (MPC) with net emission coefficient (NEC), and it covers the drawbacks of existing models. Subsequently, using this proposed model, the arc-flow interaction in an arcing chamber can be efficiently computed. The arc is represented as an energy source term composed of ohmic heating and the radiation transport in the energy conservation equation. Ohmic heating term was computed by the electric field analysis within the conducting plasma region. Radiation transport was calculated by the proposed radiation model. Also, in this paper, radiation models were introduced and applied to the gas circuit breaker (GCB) model. Through simulation results, the efficiency of the proposed model was confirmed.

CO2 Emission, Energy Consumption and Economic Development: A Case of Bangladesh

  • Islam, Md. Zahidul;Ahmed, Zaima;Saifullah, Md. Khaled;Huda, Syed Nayeemul;Al-Islam, Shamil M.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.4 no.4
    • /
    • pp.61-66
    • /
    • 2017
  • Environmental awareness and its relation to the development of economy has garnered increased attention in recent years. Researchers, over the years, have argued that sustainable development warrants for minimizing environmental degradation since one depends on the other. This study analyzes the relationship between environmental degradation (carbon emission taken as proxy for degradation), economic growth, total energy consumption and industrial production index growth in Bangladesh from year 1998 to 2013. This study uses Vector Autoregression (VAR) Model and variance decomposition of VAR to analyze the effect of these variables on carbon emission and vice-versa. The findings of VAR model suggest that industrial production and GDP per capita has significant relationship with carbon emission. Further analysis through variance decomposition shows carbon emission has consistent impact on industrial production over time, whereas, industrial production has high impact on emission in the short run which fades in the long run which is consistent with Environmental Kuznets Curve (EKC) hypothesis. Carbon emission rising along with GDP per capita and at the same time having low impact in the long run on industrial index indicates there may be other sources of pollution introduced with the rise in income of the economy over time.

The Impacts of Greenhouse Gas Abatement on Korean Economy and Energy Industries : An Economic Analysis Using a CGE Model (온실가스 배출 감축이 한국경제와 에너지산업에 미치는 영향 - CGE 모형을 사용한 경제적 분석 -)

  • Lim, Jaekyu
    • Environmental and Resource Economics Review
    • /
    • v.10 no.4
    • /
    • pp.547-567
    • /
    • 2001
  • This paper analyzed what kind of institutional scheme for domestic policy instruments to reduce GHG emissions are desirable for Korea in complying with the international efforts to mitigate climate change, by focusing on independent abatement(equivalent to the imposition of carbon tax) and domestic emission trading. It also examined the economic and environmental implications of recycling the government revenue created from implementation of those policies. By utilizing a dynamic CGE model, this study shows that the economic cost under independent abatement is projected to be higher than that under emission trading. It is because under independent abatement scheme each emitter in economy must meet its emission target regardless of the abatement cost. On the other hand, emission trading allows emitters to reduce the marginal cost of abatement through trading of emission permits. In designing future domestic policies and measure to address the climate change problem in Korea, therefore, this study proposes the introduction of domestic emission trading scheme as the main domestic policy instrument for GHG emission abatement. In terms of double dividend, in addition, this study shows that both independent abatement and emission trading schemes under various assumption on the revenue recycling may not generate the double dividend in Korea.

  • PDF

A study on development of generation expansion planning considering CO2 emission constraints and Emission Trading (CO2 배출량 제약과 배출권거래제를 고려한 설비계획 방법론에 관한 연구)

  • Kim, Yang-Il;Lee, Seung-Hyun;Han, Seok-Man;Chung, Koo-Hyung;Kim, Bal-Ho H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.46-48
    • /
    • 2006
  • WASP which is used to plan generation expansion has disadvantages that can't manage environmental factors and regional supply-demand planning. But with the effectuation of the United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol, it is expected that reducing greenhouse gases affects power system in its long-term generation expansion planning. Therefore national countermeasures is needed. This paper formulates a mathematical model considering CO2 emission constraints and Emission Trading that will be enforced. This model is based on the ORIRES which was made by ESI, Russia and manages generation expansion planning. And this mathematical model is verified by studying a case system.

  • PDF

Characteristics an Circuit Model of a Field Emission Triode

  • Nam, Jung-Hyun;Ihm, Jeong-Don;Kim, Jong-Duk;Kim, Yeo-Hwan;Park, Kyu-Man
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.129-133
    • /
    • 1997
  • A circuit model for a field emission triode has been proposed. The model parameters have been extracted from he fabricated silicon tip array and verified by comparing with the results simulated by circuit simulator(SPICE). The cut-off frequency can be calculated from the parametric capacitance and the transconductance values extracted from measurements. For the field emission triode, the capacitance of 3.45fF/tip and the transconductance of 0.94nS/tip have been measured under the emission current of 4.1nA/tip. From these values, the cut-off frequency is predicted to be 43 kHz but th measured one came out to be 6 kHz. because o the parasitic capacitance components.

  • PDF