• Title/Summary/Keyword: Emission inventory

Search Result 251, Processing Time 0.035 seconds

Inventory of Carbon Dioxide Emission in Carbon Cycle Community (The case study on Gyeongbuk Bonghwa-gun Chunyang-myeon Seobyeok-ri) (탄소순환마을의 이산화탄소배출량 조사연구 (경상북도 봉화군 춘양면 서벽리를 중심으로))

  • Kim, Hyo-Jin;Byun, Woo-Hyuk;Lim, Min-Woo;Park, Won-Kyoung;Kim, Min-Su
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.597-602
    • /
    • 2010
  • The most basic matter to establish forest carbon circulation village is statistic on greenhouse gas emissions. But currently, although there is statistic on greenhouse gas emissions in the level of city or province, there is not statistic on greenhouse gas emission in village unit. According to the results, The model area is located in Seobyeok-ri, Chunyang-myeon, Bonghwa-gun, Gyeongsangbuk-do, the total $CO_2$emissions caused by energy used in the model area was $1,755tCO_2$. Heating accounts for 55% of total emissions followed by 23% for power and 22% for vehicles. The model area emitted $572tCO_2$ due to rice growing and livestock raising, accounting for approximately 24.5% of total $CO_2$ emissions. It is expected that a reduction of as much as $884tCO_2$ emissions will be made from the current $964tCO_2$ to a level of 1/12th that amount, or $80tCO_2$ by replacing heating energy currently used in the model area with wood bioenergy such as wood chips or pellets. In addition, carbon emission reduction is expected for both heating and power by replacing the power consumption in houses, buildings, and street lights with solar power.

A Study on Estimating Ship's Emission in the Port Area of Mokpo Port (목포항 항만구역 내 선박 배기가스 배출량 산정에 대한 연구)

  • Bui, Hai-Dang;Kim, Hwayoung
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.3
    • /
    • pp.47-60
    • /
    • 2023
  • A thorough inventory of ship emissions, particularly ship's emission of in-port area is necessary to identify significant sources of exhaust gases such as NOx, SOx, PM, and CO2 and trends in emission levels over time, and reduce their serious effects on the environment and human health. Therefore, the goal of this study is to assess the volume of emissions from ships in Mokpo port, which serves as a gateway to the southwest coast of Korea, using a bottom-up methodology and data from the automatic identification system (AIS) and the Korean Port Management Information System (Port-MIS). In this work, an analysis of ship movement utilizing AIS data and an actual set of data on ship specification were gathered. By examining ship movement using AIS data, We also proposed a new approach for identifying cruising/maneuvering mode. Finally, the results were classified by ship operating mode, by exhaust gas, by ship type, and by berth, which provides a thorough and in-depth analysis of the air pollution caused by ships in Mokpo port.

Economic Impacts of Carbon Reduction Policy: Analyzing Emission Permit Price Transmissions Using Macroeconometric Models (탄소감축 정책의 경제적 영향: 거시계량모형에 기반한 배출권가격 변동 효과 분석)

  • Jehoon Lee;Soojin Jo
    • Environmental and Resource Economics Review
    • /
    • v.33 no.1
    • /
    • pp.1-32
    • /
    • 2024
  • The emissions trading system stands as a pivotal climate policy in Korea, incentivizing abatement equivalent to 87% of total emissions (as of 2021). As the system likely has a far-reaching impact, it is crucial to understand how the real economic activity, energy sector, as well as environment would be influenced by its implementation. Employing a macroeconometric model, this paper is the first study analyzing the effects of the Korean emissions trading policy. It interconnects the Korean Standard Industrial Classification (Economy), Energy Balance (Energy), and National Inventory Report (Environment), enhancing its real-world explanatory power. We find that a 50% increase in emission permit price over four years results in a decrease in greenhouse gas emissions (-0.043%) and downward shifts in key macroeconomic variables, including real GDP (-0.058%), private consumption (-0.003%), and investment (-0.301%). The price increase in emission permit is deemed crucial for achieving greenhouse gas reduction targets. To mitigate transition risk associated with price shocks, revenue recycling using auction could ensure the sustainability of the economy. This study confirms the comparative advantage of expanded current transfers expenditure over corporate tax reduction, particularly from an economic growth perspective.

Application of LCA on Lettuce Cropping System by Bottom-up Methodology in Protected Cultivation (시설상추 농가를 대상으로 하는 bottom-up 방식 LCA 방법론의 농업적 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;Kim, Gun-Yeob;So, Kyu-Ho;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1195-1206
    • /
    • 2011
  • This study was conducted to apply LCA (Life cycle assessment) methodology to lettuce (Lactuca sativa L.) production systems in Namyang-ju as a case study. Five lettuce growing farms with three different farming systems (two farms with organic farming system, one farm with a system without agricultural chemicals and two farms with conventional farming system) were selected at Namyangju city of Gyeonggi-province in Korea. The input data for LCA were collected by interviewing with the farmers. The system boundary was set at a cropping season without heating and cooling system for reducing uncertainties in data collection and calculation. Sensitivity analysis was carried out to find out the effect of type and amount of fertilizer and energy use on GHG (Greenhouse Gas) emission. The results of establishing GTG (Gate-to-Gate) inventory revealed that the quantity of fertilizer and energy input had the largest value in producing 1 kg lettuce, the amount of pesticide input the smallest. The amount of electricity input was the largest in all farms except farm 1 which purchased seedlings from outside. The quantity of direct field emission of $CO_2$, $CH_4$ and $N_2O$ from farm 1 to farm 5 were 6.79E-03 (farm 1), 8.10E-03 (farm 2), 1.82E-02 (farm 3), 7.51E-02 (farm 4) and 1.61E-02 (farm 5) kg $kg^{-1}$ lettuce, respectively. According to the result of LCI analysis focused on GHG, it was observed that $CO_2$ emission was 2.92E-01 (farm 1), 3.76E-01 (farm 2), 4.11E-01 (farm 3), 9.40E-01 (farm 4) and $5.37E-01kg\;CO_2\;kg^{-1}\;lettuce$ (farm 5), respectively. Carbon dioxide contribute to the most GHG emission. Carbon dioxide was mainly emitted in the process of energy production, which occupied 67~91% of $CO_2$ emission from every production process from 5 farms. Due to higher proportion of $CO_2$ emission from production of compound fertilizer in conventional crop system, conventional crop system had lower proportion of $CO_2$ emission from energy production than organic crop system did. With increasing inorganic fertilizer input, the process of lettuce cultivation covered higher proportion in $N_2O$ emission. Therefore, farms 1 and 2 covered 87% of total $N_2O$ emission; and farm 3 covered 64%. The carbon footprints from farm 1 to farm 5 were 3.40E-01 (farm 1), 4.31E-01 (farm 2), 5.32E-01 (farm 3), 1.08E+00 (farm 4) and 6.14E-01 (farm 5) kg $CO_2$-eq. $kg^{-1}$ lettuce, respectively. Results of sensitivity analysis revealed the soybean meal was the most sensitive among 4 types of fertilizer. The value of compound fertilizer was the least sensitive among every fertilizer imput. Electricity showed the largest sensitivity on $CO_2$ emission. However, the value of $N_2O$ variation was almost zero.

Estimation of Carbon Emission and LCA (Life Cycle Assessment) from Soybean (Glycine max L.) Production System (콩의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Ryu, Jong-Hee;Park, Jung-Ah;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.898-903
    • /
    • 2010
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle Inventory) database of soybean production system. Based on collecting the data for operating LCI, it was shown that input of organic fertilizer was value of 3.10E+00 kg $kg^{-1}$ soybean and it of mineral fertilizer was 4.57E-01 kg $kg^{-1}$ soybean for soybean cultivation. It was the highest value among input for soybean production. And direct field emission was 1.48E-01 kg $kg^{-1}$ soybean during soybean cropping. The result of LCI analysis focussed on greenhouse gas (GHG) was showed that carbon footprint was 3.36E+00 kg $CO_2$-eq $kg^{-1}$ soybean. Especially $CO_2$ for 71% of the GHG emission. Also of the GHG emission $CH_4$, and $N_2O$ were estimated to be 18% and 11%, respectively. It might be due to emit from mainly fertilizer production (92%) and soybean cultivation (7%) for soybean production system. $N_2O$ was emitted from soybean cropping for 67% of the GHG emission. In $CO_2$-eq. value, $CO_2$ and $N_2O$ were 2.36E+00 kg $CO_2$-eq. $kg^{-1}$ soybean and 3.50E-01 kg $CO_2$-eq. $kg^{-1}$ soybean, respectively. With LCIA (Life Cycle Impact Assessment) for soybean production system, it was observed that the process of fertilizer production might be contributed to approximately 90% of GWP (global warming potential). Characterization value of GWP was 3.36E+00 kg $CO_2$-eq $kg^{-1}$.

Greenhouse Gas Mitigation Effect Analysis by Cool Biz and Warm Biz (쿨맵시 및 온맵시 복장 착용에 의한 온실가스 감축 효과 분석)

  • Yeo, So-Young;Ryu, Ji-Yeon;Lee, Sue-Been;Kim, Dai-Gon;Hong, Yoo-Deog;Seong, Mi-Ae;Lee, Kyoung-Mi
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.93-106
    • /
    • 2011
  • Republic of Korea officially announced its mid term reduction target which reduce about 30% of BAU GHG emission by 2020 in the 15th meeting of UNFCCC(COP 15) held in Copenhagen, Denmark 2009. To achieve this goal, it is necessary to understand the serious of climate change and take part in GHG reduction not only industry but also the nation. However, such positive participation in green life which may cause inconvenient of the life of the people. It should be accomplished with providing reliable information. This study suggests the scientific potentialities of GHG emission by guideline on low carbon life and green life to form and change a lifestyle suitable for coping with climate change. And also, this study quantitate the GHG reduction which may reduce demand for air conditioning by cool biz and warm biz. In Korea, this campaign has become known as 'CoolMaebsi' by Ministry of Environmental of Korea. 'CoolMaebsi' is a compound word of 'Cool' which means feel refreshed, and 'Maebsi' is a Korean word which means attire. Though this campaign is effective and significant to reduce the GHG emission yet there were no study on quantitative analysis. Therefore this study calculated reduced energy consumption and potential GHG emission by measuring variation of skin temperature. As the result, wearing warm biz and cool biz have an effect of reducing not only the energy consumption but also GHG emission. To achieve the low carbon society, it is necessary to improve the energy saving system and introduce the policy which guide to change a life style.

Development of the Performance Indicator for the Mitigation of Greenhouse Gas Emissions from Products - Estimation of Social Cost for Global Warming Impact using the Conjoint Analysis - (제품의 온실가스 배출저감에 대한 성과지표 개발 - 컨조인트 분석(conjoint analysis)을 이용한 지구온난화 영향의 사회적 비용 추정 -)

  • Jeong, In-Tae;Lee, Kun-Mo;Song, Jong-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1245-1254
    • /
    • 2008
  • Proposing a method for the estimation of the social cost for global warming impact (external cost) is the aim of this paper. Both the endpoint approach and conjoint analysis were applied to estimating the social cost for global warming. The endpoint approach was used to assess the damage on the safeguard subjects by global warming due to the emission of greenhouse gases into the atmosphere. The conjoint analysis was used to estimate the economic values for safeguard subjects which measure the social preferences and willingness to pay (WTP) on safeguard subjects. The economic values of human health and social asset were estimated at 62,261,700 Won / DALY (yr) and 10,000 Won / 10,000 Won, respectively. Moreover, cost factors of GHGs were calculated by multiplying the damage factor which is quantified the unit damage on safeguard subject and the economic value. In the case of CO$_2$, the cost factor was calculated at 13.52 Won / kg (13,520 Won / ton). External cost of products or services can be calculated by multiplying the GHG inventory result of products or services by the cost factor of each GHG. inventory.

Assessing the Effects of Climate Change on the Geographic Distribution of Pinus densiflora in Korea using Ecological Niche Model (소나무의 지리적 분포 및 생태적 지위 모형을 이용한 기후변화 영향 예측)

  • Chun, Jung Hwa;Lee, Chang-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.219-233
    • /
    • 2013
  • We employed the ecological niche modeling framework using GARP (Genetic Algorithm for Ruleset Production) to model the current and future geographic distribution of Pinus densiflora based on environmental predictor variable datasets such as climate data including the RCP 8.5 emission climate change scenario, geographic and topographic characteristics, soil and geological properties, and MODIS enhanced vegetation index (EVI) at 4 $km^2$ resolution. National Forest Inventory (NFI) derived occurrence and abundance records from about 4,000 survey sites across the whole country were used for response variables. The current and future potential geographic distribution of Pinus densiflora, one of the tree species dominating the present Korean forest was modeled and mapped. Future models under RCP 8.5 scenarios for Pinus densiflora suggest large areas predicted under current climate conditions may be contracted by 2090 showing range shifts northward and to higher altitudes. Area Under Curve (AUC) values of the modeled result was 0.67. Overall, the results of this study were successful in showing the current distribution of major tree species and projecting their future changes. However, there are still many possible limitations and uncertainties arising from the select of the presence-absence data and the environmental predictor variables for model input. Nevertheless, ecological niche modeling can be a useful tool for exploring and mapping the potential response of the tree species to climate change. The final models in this study may be used to identify potential distribution of the tree species based on the future climate scenarios, which can help forest managers to decide where to allocate effort in the management of forest ecosystem under climate change in Korea.

Development of Greenhouse Gas (GHG) Emissions Inventory and Evaluation of GHG Reduction Plans of Kangwon National University (대학의 온실가스 인벤토리 구축 및 감축잠재량 평가 - 강원대학교를 중심으로)

  • Park, Sang-Young;Han, Young-Ji;Oh, A-Ram;Lee, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.32-41
    • /
    • 2012
  • Greenhouse gases (GHGs) emissions from Kangwon National University was estimated to be 21,054 ton $CO_2$-eq in 2009, which was approximately 7% higher than that in 2005. Emissions from electricity usage in Scope 2 contributed to the upward annual trend of GHG emissions, comprising about 54.3% of the total GHG emissions. On the other hand, GHG emissions from Scope 1 and Scope 3 contributed approximately 25.3% and 20.4%, respectively. Various GHG reduction plans were also introduced and evaluated in this study. Among three reduction plans including LED substitution, improvement of transportation efficiency, and green campus action plan, the green campus action plan derived the most significant GHG reduction of 5.3% of total emissions. Estimated total reduced GHG emission was $1,570ton\;CO_2-eq\;yr^{-1}$ with all three reduction plans.

Life Cycle Assessment of Carbon Monoxide Production via Electrochemical CO2 Reduction: Analysis of Greenhouse Gas Reduction Potential (전기화학적 이산화탄소 환원을 통한 일산화탄소 생산 공정의 전과정평가 : 온실가스 저감 잠재량 분석)

  • Roh, Kosan
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • Electrochemical carbon dioxide (CO2) reduction technology, one of the promising solutions for climate change, can convert CO2, a representative greenhouse gas (GHG), into valuable base chemicals using electric energy. In particular, carbon monoxide (CO), among various candidate products, is attracting much attention from both academia and industry because of its high Faraday efficiency, promising economic feasibility, and relatively large market size. Although numerous previous studies have recently analyzed the GHG reduction potential of this technology, the assumptions made and inventory data used are neither consistent nor transparent. In this study, a comparative life cycle assessment was carried out to analyze the potential for reducing GHG emissions in the electrochemical CO production process in a more transparent way. By defining three different system boundaries, the global warming impact was compared with that of a fossil fuel-based CO production process. The results confirmed that the emission factor of electric energy supplied to CO2-electrolyzers should be much lower than that of the current national power generation sector in order to mitigate GHG emissions by replacing conventional CO production with electrochemical CO production. Also, it is important to disclose transparently inventory data of the conventional CO production process for a more reliable analysis of GHG reduction potential.