• Title/Summary/Keyword: Emission factors

Search Result 923, Processing Time 0.027 seconds

An Estimation of Plant Specific Emission Factors for CO2 in Iron and Steel Industry (철강 산업의 산업공정부문 CO2 실측 배출계수 산정에 관한 연구)

  • Eom, Y.S.;Hong, J.H.;Kim, J.S.;Kim, D.G.;Lee, S.B.;Song, H.D.;Lee, S.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.50-63
    • /
    • 2007
  • The development of domestic plant specific emission factors is very important to estimate reliable national emissions management. This study, for the reason, was carried out to obtain advances emission factor for Carbon Dioxide ($CO_2$) by source-specific emission tests from the iron and steel industry sector which is well known as one of the major sources of greenhouse gases ($CO_2$). Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$. There was no good information available on $CO_2$ plant specific emission factors from the iron and steel industry in Korea so far. The major emission sources of $CO_2$ examined from the iron and steel manufacturing precesses were a hot blast stove, coke oven, sintering furnace, electric arc furnace, heating furnace, and so on. In this study, the concentration of $CO_2$ from the hot blast stove process was the highest among all processes. The $CO_2$ emission factors for a ton of Steel and Iron products (using B-C oil) were estimated to be 0.315 $CO_2$ tonne (by Tier 3 method) and 4.89 $CO_2$ tonne. In addition, emission factor of $CO_2$ for heating furnace process was the highest among all process. Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$.

The Evaluation of NOx Emission Factor from Large Combustion Facilities in Seoul (서울지역 대형연소시설에서의 질소산화물 배출계수 산정)

  • 조기찬;최종욱;박후경;유병태
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.78-83
    • /
    • 2000
  • The emission factor of nitrogen oxides(NOx) was evaluate to clarify the characteristics of NOx emitted from seven large combustion facilities in seoul area. The emission factors of NOx at A-1 and A-2 facilities of internal combustion engine were 66.957kgNOx/ton and 20.913kgNOx/ton, respectively. The emission factor of A-1 facility was higher than that of A-2 facility even same internal combustion engine, because A-1 facility adopted SCR(selective catalystic reactor) for reduction of NOx emission factor of A-2, A-4, and A-7 power generation boiler facilities were 4.300kgNOx/ton, 2.460kgNOx/ton and 1.796kgNOx/ton, respectively. The capacity of A-2 facility was about two times than that of A-4 and A-7. These emission factors were lower than those at facilities in other areas of korea, because of using low NOx burner of power generation boiler. The emission factors of NOx at A-3 and A-6 incinerator facilities were 0.147kgNOx/ton and 0.221kgNOx/ton which were lower than other facilities, respectively, because these facilities incinerate municipal solid waste of low heating value and uwe SCR for reducing NOx concentration.

  • PDF

Development of Non-CO2 Emission Factor of the Coal Briquette Boiler (가정용 연탄보일러의 Non-CO2 배출계수 개발)

  • Song, Garam;Cho, Changsang;Lee, Deakyeom;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.163-169
    • /
    • 2017
  • In this study, Non-$CO_2$ emission factors were estimated for the coal briquette boiler, which is the Korean heating system. As a result, the $CH_4$ and $N_2O$ emission factors of the coal briquette boiler were estimated to be $11.76gCH_4/TJ$ and $7.44kgN_2O/TJ$, respectively. The results showed that $CH_4$ emission factor was 12 times and $N_2O$ emission factor was 5 times higher than IPCC default value. Also the emission factors developed in this study were compared with a precedent study. The results indicated that were similar to open the air inlet of coal briquette stove because the combustion condition of this study was similar to that of coal briquette stove.

Characteristics of TVOCs Emission Factors from Chemical and Natural Coating Materials (화학 및 천연페인트에서 발생되는 TVOCs의 방출강도 특성 연구)

  • Kim Shin Do;Kim Jeong Ho;Park Jin Soo;Lee Jeong Joo
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.487-492
    • /
    • 2004
  • Building materials are composed of very complex chemical compounds, and these indoor building materials discharge very much Volatile Organic Compounds(VOCs). We performed the environmental chamber test to investigate the Total VOCs(TVOCs) emission characteristics and emission factors about chemical and natural coating materials. As the result, we concluded that TVOCs emission are high at initial time and decreased in course of time. Natural paint was low emission level for TVOCs than chemical paint by small chamber test. The TVOCs emission factor-time profile showed a good fit with the results from the measured and predicted value.

Assessment of Integrated N2O Emission Factor for Korea Upland Soils Cultivated with Red Pepper, Soy Bean, Spring Cabbage, Autumn Cabbage and Potato

  • Kim, Gun-Yeob;Na, Un-Sung;Lee, Sun-Il;Jeong, Hyun-Cheol;Kim, Pil-Joo;Lee, Jong-Eun;Seo, Young-Ho;Lee, Jong-Sik;Choi, Eun-Jung;Suh, Sang-Uk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.720-730
    • /
    • 2016
  • Greenhouse-gas emission factors are widely used to estimate emissions arising from a defined unit of a specific activity. Such estimates are used both for international reporting to the United Nations Framework Convention on Climate Change (UNFCCC) and for myriad national and sub-national reporting purposes (for example, European Union Emissions Trading Scheme; EU ETS). As with the other so-called 'Kyoto protocol GHGs', the Intergovernmental Panel on Climate Change (IPCC) provides a methodology for national and sub-national estimation of $N_2O$ emissions, based on the sector from which the emissions arise. The objective of this study was to develop a integrated emission factor to estimate the direct $N_2O$ emission from an agricultural field cultivated with the red pepper, soy bean, spring cabbage, autumn cabbage and potato in 2010~2012. Emission factor of $N_2O$ calculated using accumulated $N_2O$ emission, N fertilization rate, and background $N_2O$ emission over three year experiment was $0.00596{\pm}0.001337kg$ $N_2O-N(N\;kg)^{-1}$. More extensive studies need to be conducted to develop $N_2O$ emission factors for other upland crops in the various regions of Korea because $N_2O$ emission is influenced by many factors including climate characteristics, soil properties, and agricultural practices.

Development of Emission Factors for Greenhouse Gas CO2) from Anthracite Fired Power Plants in Korea (무연탄 화력발전소의 이산화탄소 배출계수 개발)

  • Jeon, Eui-Chan;Myeong, Soo-Jeong;Jeong, Jae-Hak;Lee, Sung-Ho;Sa, Jae-Whan;Roh, Gi-Hwan;Kim, Ki-Hyun;Bae, Wi-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.440-448
    • /
    • 2007
  • Although the anthracite power plant is an important source of greenhouse gas, research on this type of power plant has not been conducted much. The present study investigated the entire anthracite power plants in Korea and analyzed the emitted gas in connection with GC/FD and a methanizer in order to develop $CO_2$ emission factors. The study also sampled the anthracite to analyze the amount of carbon and hydrogen using an element analyzer, and to measure the calorie using an automatic calorie analyzer. The emission factors computed through the fuel analysis was 30.45 kg/GJ and that computed through the $CO_2$ gas analysis was 26.48 kg/GJ. The former is approximately about 15% higher than the latter. When compared the carbon content factors of anthracite with that of bituminous coal, the value of anthracite was 24% higher Compared with IPCC values, the emission factors by the fuel was 14% higher, and that by the emitted $CO_2$ gas was about 1.2% lower. More research is needed on our own emission factors of various energy-consuming facilities in order to stand on a higher position in international negotiations regarding the treaties on climate changes.

Emission Characteristics of Particulate Matters from Under-fired Charbroiling Cooking Process using the Hood Method (Hood Method를 이용한 직화구이 음식점의 미세먼지 배출 특성)

  • Lee, Jun-Bok;Kim, Heung-Joo;Jung, Kweon;Kim, Shin-Do
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.315-321
    • /
    • 2009
  • Under-fired charbroiling cooking processes are known as important contributors of particulate matter (PM). In this study, we characterized the emission of particulate matters from under-fired charbroiling cooking processes using the hood method. Accumulated mass concentration of $PM_{10}$ was 92.2~99.5% and particle size of 2.0~2.5 ${\mu}m$ was highest. The concentration of PM increased very sharply at the beginning of charbroiling meats and then gradually decreased as the charbroiling continued. PM concentration also increased very sharply when gravy from meat spilled onto the frame of fire. However, mass concentration during charbroiling using only charcoals was very low compared to that of meats. We estimated the emission factors of charcoal, pork belly and pork shoulder respectively; 0.01~0.02 g/kg, 5.02~6.26 g/kg, 2.86~4.15 g/kg of $PM_{2.5}$, 0.01~0.03 g/kg, 7.44~7.91 g/kg, 4.54~5.56 g/kg of $PM_{10}$, and 0.02~0.05 g/kg, 7.59~7.95 g/kg, 4.93~5.68 g/kg of TSP. The emission factors of charcoal were negligible and the emission factors of pork belly were higher than that of pork shoulder. Emission rates of particulate matters from under-fired charbroiling cooking process were estimated as 578,009~1,265,152 kg/yr of $PM_{2.5}$, 917,539~1,598,619 kg/yr of $PM_{10}$ and 996.358~1,606,703 kg/yr of TSP. But emission factors should be verified with an in-stack cascade impactor because the reported method involves some assumptions.

Assessment of Greenhouse Gas Emissions from Poultry Enteric Fermentation

  • Wang, Shu-Yin;Huang, Da-Ji
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.873-878
    • /
    • 2005
  • Emissions of nitrous oxide (N$_2$O) and methane (CH$_4$) from poultry enteric fermentation were investigated using a respiration chamber. Birds were placed in a respiration chamber for certain intervals during their growing period or for the whole life cycle. The accumulated gas inside the chamber was sampled and analyzed for N$_2$O and CH$_4$ production. A curve for gas production during a life cycle was fitted. The calculated area under the curve estimated the emission factor of poultry enteric fermentation on a life cycle basis (mg bird$^{-1}$ life cycle$^{-1}$). This method can be used to estimate CH$_4$ or N$_2$O emissions from different types of avian species taking into account factors such as diet, season or thermal effects. The CH$_4$/N$_2$O emission factors estimated for commercial broiler chickens, Taiwan country chickens and White Roman Geese were 15.87/0.03, 84.8/16.4 and 1,500/49 (mg bird$^{-1}$ life cycle$^{-1}$), respectively, while the calculated CH$_4$/N$_2$O emission from enteric fermentations were 3.03/0.006, 14.73/2.84 and 9.5/0.31 (Mg year$^{-1}$), respectively in Taiwan in the year of 2000. The described method is applicable to most poultry species and the reported emission factors were applicable to meat type poultry only.

Emission Characteristics of Mercury in Zn Smelting Process (아연제련시설에서의 수은 배출특성)

  • Park, Jung-Min;Lee, Sang-Bo;Kim, Hyung-Chun;Song, Duk-Jong;Kim, Min-Su;Kim, Min-Jung;Kim, Yong-Hee;Lee, Sang-Hak;Kim, Jong-Chun;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.507-516
    • /
    • 2010
  • Stationary combustion sources such as coal-fired power plants, waste incinerators, industrial manufacturing, etc. are recognized as major sources of mercury emissions. Due to rapid economic growth, zinc production in Korea has increased significantly during the last 30 years. Total zinc production in Korea exceeded 739,000 tons in 2008, and Korea is currently the third largest zinc producing country in the world. Previous studies have revealed that zinc smelting has become one of the largest single sectors of total mercury emissions in the World. However, studies on this sector are very limited, and a large gap in the knowledge regarding emissions from this sector needs to be bridged. In this paper, Hg emission measurements were performed to develop emission factors from zinc smelting process. Stack sampling and analysis were carried out utilizing the Ontario Hydro method and US EPA method 101A. Preliminary data showed that $Hg^0$ concentrations in the flue gas ranged from 4.56 to $9.90\;{\mu}g/m^3$ with an average of $6.40\;{\mu}g/m^3$, Hg(p) concentrations ranged from 0.03 to $0.09\;{\mu}g/m^3$ with an average of $0.04\;{\mu}g/m^3$, and RGM concentrations ranged from 0.23 to $1.17\;{\mu}g/m^3$ with an average of $6.40\;{\mu}g/m^3$. To date, emission factors of 7.5~8.0 g/ton for Europe, North America and Australia, and of 20 or 25 g/ton for Africa, Asia and South America are widely accepted by researchers. In this study, Hg emission factors were estimated using the data measured at the commercial facilities as emissions per ton of zinc product. Emission factors for mercury from zinc smelting pross ranged from 4.32 to 12.96 mg/ton with an average of 8.31 mg/ton. The emission factors that we obtained in this study are relatively low, considering Hg contents in the zinc ores and control technology in use. However, as these values are estimated by limited data of single measurement of each, the emission factor and total emission amount must be updated in future.

Economic Development, Globalization, Political Risk and CO2 Emission: The Case of Vietnam

  • VU, Thi Van;HUANG, De Chun
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.21-31
    • /
    • 2020
  • This study investigates the dynamic effects of economic development, international cooperation, electricity consumption, and political risk on the escalation of CO2 emission in Vietnam. We adopted autoregressive distributed lag model and Granger causality method to examine the interaction between CO2 and various economic and political factors, including foreign direct investment, trade openness, economic growth, manufacture, electricity consumption, and political risk in Vietnam since the economic revolution in 1986. The findings reflect opposite influence between these factors and the level of CO2 in the intermediate and long-term durations. Accordingly, foreign direct investment and CO2 emission have a bidirectional relationship, in which foreign direct investment accelerates short-term CO2 emission, but reduces it in the long run through an interactive mechanism. Moreover, economic development increases the volume of CO2 emission in both short and long run. There was also evidence that political risk has a negative effect on the environment. Overall, the findings confirm lasting negative environmental effects of economic growth, trade liberalization, and increased electricity consumption. These factors, with Granger causality, mutually affect the escalation of CO2 in Vietnam. In order to control the level of CO2, more efforts are required to improve administrative transparency, attract high-quality foreign investment, and decouple the environment from economic development.