• Title/Summary/Keyword: Emission cost

Search Result 644, Processing Time 0.025 seconds

Optimal mix design of air-entrained slag blended concrete considering durability and sustainability

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2021
  • Slag blended concrete is widely used as a mineral admixture in the modern concrete industry. This study shows an optimization process that determines the optimal mixture of air-entrained slag blended concrete considering carbonation durability, frost durability, CO2 emission, and materials cost. First, the aim of optimization is set as total cost, which equals material cost plus CO2 emission cost. The constraints of optimization consist of strength, workability, carbonation durability with climate change, frost durability, range of components and component ratio, and absolute volume. A genetic algorithm is used to determine optimal mixtures considering aim function and various constraints. Second, mixture design examples are shown considering four different cases, namely, mixtures without considering carbonation (Case 1), mixtures considering carbonation (Case 2), mixtures considering carbonation coupled with climate change (Case 3), and mixtures of high strength concrete (Case 4). The results show that the carbonization is the controlling factor of the mixture design of the concrete with ordinary strength (the designed strength is 30MPa). To meet the challenge of climate change, stronger concrete must be used. For high-strength slag blended concrete (design strength is 55MPa), strength is the control factor of mixture design.

NOx Emission Characteristic according to Aging of EGR Cooler in Non-Road Diesel Engine (EGR 적용 비도로 엔진의 쿨러 열화에 따른 질소산화물 배출특성)

  • Lee, Kyoung-Bok;Oh, Kwang-Chul
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.37-45
    • /
    • 2016
  • Exhaust gas recirculation has the advantage of being low-cost and easy to control of NOx emission. Therefore, it is most generally used to reduce NOx emission according to strengthen regulation. In the case of a non-road engine, such as the agricultural engine, since it mainly operate a middle or high-load state, NOx emission is decreased in accordance with the mapping range of the EGR rate, but results in an increase in the particulate matter which is caused to deposit and fouling problem of the EGR system. This problem has become an important issue for maintaining the performance of the engine, as well as emission performance. This study had examined the effects of cooler aging on the performance of heat transfer efficiency and NOx emission in non-road diesel engine. As a result of the EGR cooler aging during 200 hours engine operation, the cooling performance decreased about 25% compared with that of fresh cooler and the NOx emission increased about 14.6% on NRSC(non-road steady cycle) and 20% on NRTC(non-road transient cycle) compared with that of fresh cooler respectively.

A Study on Greenhouse Gas Emission Characteristics of Passenger Car and Van with LPG Fuel According to Displacement and Vehicle Weight (배기량과 차량중량에 따른 LPG 연료를 사용하는 승용 및 승합형 자동차 온실가스 배출 특성에 관한 연구)

  • KIM, HYUNG JUN;LEE, JONG TAE;LIM, YUN SUNG;YUN, CHANG WAN;KEEL, JI HOON;HONG, YOU DEUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.497-502
    • /
    • 2018
  • In Korea, passenger car and van using LPG fuel including taxi constantly increased due to the high cost of fuel. Recently, the emission standard has continuously tightened in the world. In this investigation was conducted the greenhouse gas emission characteristics of LPG vehicles according to the displacement and weight. Exhaust emission characteristics of 13 test LPG vehicles from about 1.0 L to 3.0 L displacements were measured and analyzed by using chassis dynamometer and emission analyzer. It is revealed that the greenhouse gas emission was showed the increasing tendency as the displacement and curb weight increased. Also, greenhouse gas emission of SC03 driving cycle has highest value and that of HWFET driving cycle shows the lowest value.

Economic Assessment of Coal-fired & Nuclear Power Generation in the Year 2000 -Equal Health Hazard Risk Basis- (2000년대 원자력과 유연탄 화력 발전의 경제성 평가 -동일 보건 위험도 기준-)

  • Seong, Ki-Bong;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.171-185
    • /
    • 1989
  • On the basis of equal health hazard risk, economic assessment of nuclear was compared with that of coal for the expansion planning of electric power generation in the year 2000. In comparing health risks, the risk of coal was roughly ten times higher than that of nuclear according to various previous risk assessments of energy system. The zero risk condition can never be achievable. Therefore, only excess relative health risk of coal over nuclear was considered as social cost. The social cost of health risk was estimated by calculation of mortality and morbidity costs. Mortality cost was $250,000 and morbidity cost was $90,000 in the year 2000.(1986US$) Through Cost/Benefit Analysis, the optimal emission standards of coal-fired power generation were predicted. These were obtained at the point of least social cost for power generation. In the year 2000, the optimal emission standard of SOx was analyzed as 165ppm for coal-fired power plants in Korea. From this assessment, economic comparison of nuclear and coal in the year 2000 showed that nuclear would be more economical than coal, whereas uncertainty of future power generation cost of nuclear would be larger than that of coal.

  • PDF

Definition of Environmental Cost and Eco-VE Model for Eco-VE of Construction Facility (건설시설물 친환경 VE를 위한 환경비용 및 친환경가치모델 정립)

  • Kim, Myung-Jin;Kim, Joon-Soo;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.903-913
    • /
    • 2016
  • Paris Agreement of Climate Change seem affect to Korea eco-policy. Meanwhile the eco-design for reduce carbon emission have been applied in design phase of construction. However eco-design have applied passively except the project of eco-building system. For reflect eco-component in design, design VE that be appling to basic design and executing design phase of all construction project of over 10 billion should be use. But present applying VE Job Plan is reflecting partly eco-component, so the effect is small. Therefor new eco-VE development that reflect eco-elements to exist VE need. As the result of this study, the concept of environmental cost is defined to accounting. The calculation of the cost was using methods that apply $CO_2$ emission trading price, WTP, carbon productivity concept and carbon tax based on $CO_2$ emission. However, in order to apply eco-friendly VE at design phase, the model of new concept included carbon productivity concept is necessary. The eco-friendly VE model of new concept is model using $CO_2$ emission and potential environmental pollution index (PEPI). This study tried define eco-value model and environmental cost definition that become the major axle of eco-VE.

Analysis of Greenhouse Gas Emission and Abatement Potential for the Korean Waste Sector (한국의 폐기물부문의 온실가스 배출량 및 감축잠재량 분석)

  • Chung, Yongjoo;Kim, Hugon
    • Korean Management Science Review
    • /
    • v.33 no.4
    • /
    • pp.17-31
    • /
    • 2016
  • Waste sector has been a target of abatement policies by the most governments, even though its greenhouse gas (GHG) emission is not so high, since it is related to almost of other sectors. This study propose new GHG calculation equations which resolves logical contradiction of IPCC GL (Intergovernmental Panel on Climate Change Guideline) equations by including waste-to-energy effects. According to two GHG calculation equations, GHG emission inventory and BAU by the year 2050 have been computed. And GHG abatement potential and marginal cost for the five abatement policies carefully selected from the previous researches have been calculated for the year 2020. The policy that makes solid fuel like RDF from flammable wastes and uses them as combustion fuel of electricity generations has been found to be the most efficient and effective one among five policies. The cumulative abatement amount when five policies not mutually exclusive are applied sequentially has been reckoned.

Excellent field emission properties from carbon nanotube field emitters fabricated using a filtration-taping method

  • Shin, Dong Hoon;Jung, Seung;Yun, Ki Nam;Chen, Guohai;Jeon, Seok-Gy;Kim, Jung-Il;Lee, Cheol Jin
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.214-217
    • /
    • 2014
  • A filtration-taping method was demonstrated to fabricate carbon nanotube (CNT) emitters. This method shows many good features, including high mechanical adhesion, good electrical contact, low temperature, organic-free, low cost, large size, and suitability for various CNT materials and substrates. These good features promise an advanced field emission performance with a turn-on field of $0.88V/{\mu}m$ at a current density of $0.1{\mu}A/cm^2$, a threshold field of $1.98V/{\mu}m$ at a current density of $1mA/cm^2$, and a good stability of over 20 h. The filtration-taping technique is an effective way to realize low-cost, large-size, and high-performance CNT emitters.

Analysis of Energy Consumption & Environmental Load of Electric Heat Pump and Gas Engine Driven Heat Pump (전기구동 히트펌프(EHP)와 가스엔진구동 히트펌프(GHP)의 에너지소비량 및 환경부하 분석)

  • Kim, Sang-Hun;Lim, Sang-Cae;Chung, Kwang-Seop;Kim, Young-Il
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.933-937
    • /
    • 2006
  • Energy is motive power that makes convenient society. But, our country's energy is depending on most import. Also, energy and environmental issue are important problem in community of nations. The purpose of this study is to analysis the energy consumption and environmental load of EHP and GHP in Medium and small-scaled office building. The annual energy consumption used to cooling and heating by EHP was 10 percent more than GHP. And annual energy cost of EHP was 33 percent more expensive than GHP. But, Compared to the annual $CO_2$ emission, EHP was 6 percent less than GHP. Therefore, equipment selection should be consider environmental load as well as energy consumption and cost.

  • PDF

Supply Chain Coordination Under the Cap-and-trade Emissions Regulation (탄소배출권거래제도에서의 공급망 조정 모형)

  • Min, Daiki
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.243-252
    • /
    • 2015
  • This paper considers a supply chain consisting of a manufacturer under the cap-and-trade emissions regulation and a permit supplier. We study joint production quantity and investment in reducing permit production cost decisions for centralized and decentralized supply chains. We formulate two supply chain contracts with aims to coordinate the decentralized supply chain; wholesale price contract and cost-sharing contract. Under the cost-sharing contract, the manufacturer shares a part of the investment in reducing permit production cost and then is allowed to purchase emission permit at a lower price. We analytically find that the proposed cost-sharing contract with reasonable parameters can coordinate the supply chain whereas the wholesale price contract is not desirable to achieve the system-wide profit. Numerical example is followed to support the analysis.

Relative Cost Modeling for Main Component Systems fo Parallel Hybrid Electric Vehicle (병렬 하이브리드 전기자동차의 주요 구성시스템에 대한 상대적 가격 모델링)

  • Kim, Pill-Soo;Kim,Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.6
    • /
    • pp.294-300
    • /
    • 1999
  • There is a growing interest in hybrid electric vehicles due to environmental concerns. Recent efforts are directed toward developing an improved main component systems for the hybrid electric vehicle applications. Soon after the introduction of electric starter for internal combustion engine early this century, despite being energy efficient and nonpolluting, electric vehicle lost the battle completly to internal combustion engine due to its limited range and inferior performance. Hybrid Electric vehicles offer the most promising solutions to reduce the emission of vehicles. This paper describes a method for cost reduction estimation of parallel hybrid electric vehicle. We used a cost reduction structure that consisted of five major subsystems (three-type and two-type motor) for parallel hybrid electric vehicle. Especially, we estimated the potential for cost reductions in parallel hybrid electric vehicle as a function of time using the learning curve. Also, we estimated the potentials of cost by depreciation.

  • PDF