• Title/Summary/Keyword: Emission Velocity

Search Result 458, Processing Time 0.029 seconds

Designation of fuel oil scrubber nozzle positioning using CFD analysis and PIV methods (CFD 해석 및 PIV 실험을 통한 연료유 스크러버의 노즐 위치선정)

  • Kim, In-Cheol;Kim, Chang-Goo;Park, Sung-Jin;Cho, Dong-Yeon;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.773-778
    • /
    • 2015
  • Global warming has recently become an issue that has resulted in a growing trend to minimize environmental pollution. The International Maritime Organization (IMO) has shown that the majority of marine atmospheric pollution occurs as a result of emissions from marine vessels. Therefore, the environmental regulations and emission standards regarding marine vessels have gradually become stricter, and the research and development in this area is experiencing significant progress. In this study, a nozzle for a fuel oil scrubber was investigated using computational fluid dynamics (CFD) and particle imaging velocimetry (PIV). Experiments were conducted on scaled-down model of the scrubber to determine its performance, which was then compared with CFD results. Based on the experimental results, it was found that at a spray angle of $66^{\circ}$, the spray velocity at the nozzle was 20.1 m/s. From this comparison, a full-scale scrubber model was analyzed using CFD, and the effect of the positioning of the nozzle was studied.

The Methodology for Prediction and Control of Hazardous Chlorine Gas Flow Releases as Meteorological Data (기상조건에 따른 유해독성염소가스의 가상흐름누출에 관한 예측 및 제어론)

  • Kim, Jong-Shik;Park, Jong-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1155-1160
    • /
    • 1999
  • The screening methodology modeling, dispersion modeling procedures for continuous and instantaneous releases of the gas phase flow from the storage tank and pressure relief valve were considered. This study was performed to develop the screening methodology for prediction and control of hazardous/toxic gas releases by estimating the 1-hr average maximum ground-level concentration of $Cl_2$ gas vs. downwind distance by incorporating source term model including the general/physical properties of released material and release mode of the $Cl_2$ storage tank of the chemical plant facilities, dispersion model, and meteorological/topographical data into the TSCREEN model. As the results of the study, it was found that dispersion modes of the dense gas were affected by the state of the released material, the released conditions, physical-chemical properties of released material, and the released modes (continuous and instantaneous releases), and especially largely affected by initial (depressurized) density of the released material and release emission rate as well as the wind velocity. Especially, this study was considered to release hazardous material as meteorological data. It was thought that this screening methodology can be useful as a preliminary guideline for application of the refined analysis model by developing the generic sliding scale methodology for various senarios selected.

  • PDF

A Study on the Effect of Fluidizing Media on the N2O Production in Fluidized Bed Incineration of Sewage Sludge (하수슬러지 유동층 소각에서 유동매체가 N2O 발생에 미치는 영향에 관한 연구)

  • Park, Jong-Ju;Lee, Seung-Jae;Ryu, In-Soo;Jeon, Sang Goo;Park, Yeong-Sung;Moon, Seung-Hyun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.390-397
    • /
    • 2014
  • This study was performed to investigate the effects of fluidizing media on $N_2O$ production in fluidized bed incineration of sewage sludge. The fluidized media were prepared in a form of 2 mm bead by mixing zeolite powders in our lab. Sand having 0.4 mm of the mean size showed 0.44 m/s of minimum fluidization velocity ($U_{mf}$), while the prepared zeolite media 0.5 m/s. When the ratio of fluidizing media height to the inside diameter of the incinerator (bed aspect ratio) increased from 1.4 to 3.1, it was found that $U_{mf}$ of the zeolite media was varied from 0.5 m/s to 0.7 m/s. Under the operation conditions in 1.79 of excess air ratio, $909^{\circ}C$ of bed temperature and ca. 1.65 m/s of superficial velocity, as the weight of fluidizing meadia was increased, $O_2$ concentration in the flue gas was slightly decreased, and $CO_2$ increased. Above 6 kg of fluidizing media weight (1.98 of bed aspect ratio), it was observed that $N_2O$ concentration was significantly reduced, which might result from the decomposition of $N_2O$ on the zeolite media rather than transformation of $N_2O$ to NOx. On the other hand, in a variation of the zeolite media mixing ratio to sand and bed temperature at a constant total bed height, significant difference was exhibited in $N_2O$ emission concentration according to the temperature. Considering the operation temperature in the incineration, the effective calcination temperature of the zeolite media was suggested to be around $900^{\circ}C$.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS (TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구)

  • So, Sunghyun;Park, Daegeun;Park, Jiyeon;Song, Aran;Jeong, Nakwon;Yoo, Miyeon;Hwang, Jungho;Lee, Changyeop
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF

Optimum Synthesis Conditions of Coating Slurry for Metallic Structured De-NOx Catalyst by Coating Process on Ship Exhaust Gas (선박 배연탈질용 금속 구조체 기반 촉매 제조를 위한 코팅슬러리 최적화)

  • Jeong, Haeyoung;Kim, Taeyong;Im, Eunmi;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.127-134
    • /
    • 2018
  • To reduce the environmental pollution by $NO_x$ from ship engine, International maritime organization (IMO) announced Tier III regulation, which is the emmision regulation of ship's exhaust gas in Emission control area (ECA). Selective catalytic reduction (SCR) process is the most commercial $De-NO_x$ system in order to meet the requirement of Tier III regulation. In generally, commercial ceramic honeycomb SCR catalyst has been installed in SCR reactor inside marine vessel engine. However, the ceramic honeycomb SCR catalyst has some serious issues such as low strength and easy destroution at high velocity of exhaust gas from the marine engine. For these reasons, we design to metallic structured catalyst in order to compensate the defects of the ceramic honeycomb catalyst for applying marine SCR system. Especially, metallic structured catalyst has many advantages such as robustness, compactness, lightness, and high thermal conductivity etc. In this study, in order to support catalyst on metal substrate, coating slurry is prepared by changing binder. we successfully fabricate the metallic structured catalyst with strong adhesion by coating, drying, and calcination process. And we carry out the SCR performance and durability such as sonication and dropping test for the prepared samples. The MFC01 shows above 95% of $NO_x$ conversion and much more robust and more stable compared to the commercial honeycomb catalyst. Based on the evaluation of characterization and performance test, we confirm that the proposed metallic structured catalyst in this study has high efficient and durability. Therefore, we suggest that the metallic structured catalyst may be a good alternative as a new type of SCR catalyst for marine SCR system.

A CYANOACETYLENE STUDY OF THE MOLECULAR DISK IN STAR FORMING REGIONS

  • Chung, H.S.;Kameya, Osamu;Morimoto, Masaki
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.2
    • /
    • pp.217-271
    • /
    • 1991
  • We have observed dense core around young stellar objects, DR21, S140, Orion-KL, and L1551 using four millimeter-wave transitions of $HC_3N\;J$=4-3, J=5-4, J=10-9, and J=12-11. The spatial distribution of $HC_3N$ emission closely resembles the morphology of the previous CS observations that trace high density gas. These observations reveal the existence of $HC_3N$ dense cores around central IR source, elliptical in shape and almost perpendicular to the CO bipolar outflow axis. Small differences can be explained by that $HC_3N$ molecular line is more optically thin and is seen to be more detailed structure in the neighborhood of central IR sources. In S140 and Orion-KL, massive(${\sim}10\;M_{\odot}$), slowly rotating dense cores lie near at the central IR sources of bipolar outflows. The velocity channel maps of DR21 show that the bipolar outflow gas may have a correlation with the dense core of DR21. We analyzed intensities of the four lines to derive physical conditions in dense core from two methods, LTE and LVG. The column density of $HC_3N$, $N(HC_3N)$, between LTE and LVG calculations agree well with each other. The abundances of $HC_3N$ in each observing source have been estimated using the average values of $n(H_2)$ and $N(HC_3N)$ and assuming the size of dense core. The fractional $HC_3N$ abundances in massive dense cores of DR21, S140, and Orion-KL have a range of $(2-7){\times}10^{-10}$, while that of low mass dense core, L1551, has one order of magnitude greater value of $2{\times}10^{-9}$. This should be considered good agreement with the result by Morris et al.(1976). It may be considered that dense cores of DR21, S140, and Orion-KL may have almost same stage of chemical evolution, and their abundances have a small values relative to that of L1551. The column density $N(HC_3N)$ decreases with increasing distance from the densest part of the cloud, the central infrared source, and have the relation of $N(HC_3N){\varpropto}R^{\alpha}$, where a has a range of 0.65 to 0.89. The values of $n(H_2)$ are not varied with increasing distance from the dense core, and have almost same values. Therefore, it is considered that the dense cores in these regions probably consist of dense clumps in diffuse molecular gas medium, and $n(H_2)$ of each clump is ${\sim}10^5\;cm^{-3}$. Levels in the $T_{ex}$ increases with $n(H_2)$. It is considered that the $HC_3N$ dense cores are not completely thermalized. We examine the relationships between the luminosity of central infrared sources versus mass of the dense cores, and the luminosity of central infrared sources versus molecular hydrogen column density. Luminosities of the central IR sources show good correlation with mass and hydrogen column density of the dense core. Same has been found from CS observations. However, mass and size derived from $HC_3N$ observations are one order of magnitude smaller than those from CS. It can be interpreted that we see more central part of the cloud cores in $NC_3N$ lines than CS lines.

  • PDF