• 제목/요약/키워드: Emission Estimation Model

검색결과 163건 처리시간 0.026초

저주파 노이즈와 BTI의 머신 러닝 모델 (Machine Learning Model for Low Frequency Noise and Bias Temperature Instability)

  • 김용우;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.88-93
    • /
    • 2020
  • Based on the capture-emission energy (CEE) maps of CMOS devices, a physics-informed machine learning model for the bias temperature instability (BTI)-induced threshold voltage shifts and low frequency noise is presented. In order to incorporate physics theories into the machine learning model, the integration of artificial neural network (IANN) is employed for the computation of the threshold voltage shifts and low frequency noise. The model combines the computational efficiency of IANN with the optimal estimation of Gaussian mixture model (GMM) with soft clustering. It enables full lifetime prediction of BTI under various stress and recovery conditions and provides accurate prediction of the dynamic behavior of the original measured data.

교통온실가스 감축정책의 효과분석 방법론 연구 (A Methodology for Evaluating the Effects of Transportation Policies Related to Greenhouse Gas Reduction)

  • 이규진;이용주;최기주
    • 대한교통학회지
    • /
    • 제36권1호
    • /
    • pp.1-12
    • /
    • 2018
  • 본 연구는 교통온실가스 감축목표 설정 및 효과적 이행계획 수립에 기여하기 위한 교통온실가스 감축정책의 정량적 효과분석 방법론 정립을 목적으로 한다. 본 연구는 실제 교통 배출 자료에 근거한 교통수단별 온실가스 배출 원단위 추정모형을 포함하여, 수단효용함수와 수요추정모형 등을 활용하고 있다. 연구결과, 전기차 등 온실가스 감축정책 효과는 지역과 대상차종 등에 따라 다양하게 도출될 수 있으며, 저예산 정책인 에코드라이브 활성화 정책은 높은 온실가스 감축효과를 기대할 수 있는 것으로 확인되었다. 또한 자동차 배출개선 정책 뿐 아니라 대중교통 이용활성화 정책도 높은 온실가스 감축효과를 기대할 수 있으며, 본 연구는 이러한 사실을 정량적으로 확인하고 있다. 본 연구결과는 신기후체제 대응을 위한 국가 및 지자체의 온실가스 감축정책 평가에 유용하게 활용될 수 있을 것으로 기대된다.

토양 특성을 이용한 토양유기탄소저장량 산정 모형 개발 (Development of Soil Organic Carbon Storage Estimation Model Using Soil Characteristics)

  • 이태화;김상우;신용철;정영훈;임경재;양재의;장원석
    • 한국농공학회논문집
    • /
    • 제61권6호
    • /
    • pp.1-8
    • /
    • 2019
  • Carbon dioxide is one of the major driving forces causing climate changes, and many countries have been trying to reduce carbon dioxide emissions from various sources. Soil stores more carbon dioxide(two to three times) amounts than atmosphere indicating that soil organic carbon emission management are a pivotal issue. In this study, we developed a Soil Organic Carbon(SOC) storage estimation model to predict SOC storage amounts in soils. Also, SOC storage values were assessed based on the carbon emission price provided from Republic Of Korea(ROK). Here, the SOC model calculated the soil hydraulic properties based on the soil physical and chemical information. Base on the calculated the soil hydraulic properties and the soil physical chemical information, SOC storage amounts were estimated. In validation, the estimated SOC storage amounts were 486,696 tons($3.526kg/m^2$) in Jindo-gun and shown similarly compared to the previous literature review. These results supported the robustness of our SOC model in estimating SOC storage amounts. The total SOC storage amount in ROK was 305 Mt, and the SOC amount at Gyeongsangbuk-do were relatively higher than other regions. But the SOC storage amount(per unit) was highest in Jeju island indicating that volcanic ashes might influence on the relatively higher SOC amount. Based on these results, the SOC storage value was shown as 8.4 trillion won in ROK. Even though our SOC model was not fully validated due to lacks of measured SOC data, our approach can be useful for policy-makers in reducing soil organic carbon emission from soils against climate changes.

UM-CMAQ-Pollen 모델의 참나무 꽃가루 배출량 산정식 개선과 예측성능 평가 (Improvement and Evaluation of Emission Formulas in UM-CMAQ-Pollen Model)

  • 김태희;서윤암;김규랑;조창범;한매자
    • 대기
    • /
    • 제29권1호
    • /
    • pp.1-12
    • /
    • 2019
  • For the allergy patient who needs to know the situation about the extent of pollen risk, the National Institute of Meteorological Sciences developed a pollen forecasting system based on the Community Multiscale Air Quality Modeling (CMAQ). In the old system, pollen emission from the oak was estimated just based on the airborne concentration and meteorology factors, resulted in high uncertainty. For improving the quality of current pollen forecasting system, therefore the estimation of pollen emission is now corrected based on the observation of pollen emission at the oak forest to better reflect the real emission pattern. In this study, the performance of the previous (NIMS2014) and current (NIMS2016) model system was compared using observed oak pollen concentration. Daily pollen concentrations and emissions were simulated in pollen season 2016 and accuracy of onset and end of pollen season were evaluated. In the NIMS2014 model, pollen season was longer than actual pollen season; The simulated pollen season started 6 days earlier and finished 13.25 days later than the actual pollen season. The NIMS2016 model, however, the simulated pollen season started only 1.83 days later, and finished 0.25 days later than the actual pollen season, showing the improvement to predict the temporal range of pollen events. Also, the NIMS2016 model shows better performance for the prediction of pollen concentration, while there is a still large uncertainty to capture the maximum pollen concentration at the target site. Continuous efforts to correct these problems will be required in the future.

동적특성을 고려한 디젤엔진 흡배기 시스템의 상태추정 모델 (Air System Modeling for State Estimation of a Diesel Engine with Consideration of Dynamic Characteristics)

  • 이주원;박영섭;선우명호
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.36-45
    • /
    • 2014
  • Model based control methods are widely used to improve the control performance of diesel engine air systems because the control results of the air system significantly affect the emission level and drivability. However, the model based control algorithm requires a lot of unmeasurable states which are hard to be measured in a mass production engine. In this study, an air system model of the diesel engine is proposed to estimate 11 unmeasurable states using only sensors equipped in a mass production engine. In order to improve the estimation performance in the transient condition, dynamic characteristics of the air system are analyzed and implemented as discrete filters. Turbine and compressor efficiency models are also proposed to overcome a limitation of the constant or look-up table based efficiency values. The proposed air system model was validated in steady state and transient conditions by real-time engine experiments. The maximum error of the estimation for 11 physical states was 11.7%.

경험식을 이용한 발원지 황사의 시간별 발생량 추정 (Estimation of Hourly Emission Flux of Asian Dust Using Empirical Formulas in the Source Area)

  • 문윤섭;이승환
    • 한국대기환경학회지
    • /
    • 제25권6호
    • /
    • pp.539-549
    • /
    • 2009
  • The purpose of this study is to estimate hourly Asian dust emission flux in springtime by using the optimized Weather Research Forecasting model (WRF) in order to accurately predict the horizontal flux of Asian dusts. Asian dust emission flux using 5 empirical formulas such as US EPA, Park and Inn, Wang, The Goddard Chemistry Aerosol Radiation and Transport (GOCART) and Dust Entrainment and Deposition (DEAD) were calculated and compared by using classified land-use types and size distribution at various locations in China and Mongolia together with the hourly meteorological elements of the WRF model. As a result, the empirical formula in US EPA among them, which was considered the various conditions such as vegetation, soil type and terrain, was better than the other 4 empirical formulas. However, these formulas were adjusted hourly and vertically in time and space because there was different order and time resolution of dust emissions from original empirical formulas.

Methane emission from municipal solid waste dumpsites: A case study of Chennai city in India

  • Srinivasan, Pavithrapriya;Andimuthu, Ramachandran;S.N., Ahamed Ibrahim;Ramachandran, Prasannavenkatesh;Rajkumar, Easwari;Kandasamy, Palanivelu
    • Advances in environmental research
    • /
    • 제9권2호
    • /
    • pp.97-107
    • /
    • 2020
  • The indiscriminate growth in global population poses a threat to the world in handling and disposal of Municipal solid waste. Rapid urban growth increases the production, consumption and generation of Municipal solid waste which leads to a drastic change in the environment. The methane produced from the Municipal Solid waste accounts for up to 11% global anthropogenic emissions, which is a major cause for global warming. This study reports the methane emission estimation using IPCC default, TNO, LandGEM, EPER and close flux chamber from open dump yards at Perungudi and Kodungaiyur in Chennai, India. The result reveals that the methane emission using close flux chamber was in the range of 8.8 Gg/yr-11.3 Gg/yr and 6.1Gg/yr to 9.1 Gg/yr at Kodungaiyur and Perungudi dump yard respectively. The per capita waste generation was estimated based on waste generation and population. The waste generation potential was projected using linear regression model for the period 2017-2050. The trend of CH4 emission in the actual field measurement were increased every year, similarly the emission trend also increased in IPCC default method (mass balance approach), EPER Germany (zero order decay model) where as TNO and Land GEM (first order decay model) were decreased. The present study reveals that Kodungaiyur dump yard is more vulnerable to methane emission compared to Perungudi dump yard and has more potential in waste to energy conversion mechanisms than compare to Perungudi dump yard.

비도로용 디젤엔진의 Urea SCR system 적용을 위한 NO2/NOx ratio 예측모델 개발에 관한 연구 (Development of NO2/NOx Ratio Estimation Model for Urea-SCR System Application on Non-road Diesel Engine)

  • 강석호;김훈명;강정호;박은용;권오현;김대열
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.178-187
    • /
    • 2020
  • The current emission regulations, US Tier-4 and EU Stage-V, are only able to satisfy the regulations when all currently mass-produced emission reduction technologies such as EGR, DOC, DPF, and SCR are applied. Therefore, in this study, for the application of the Urea-SCR system to non-road diesel engines, the database was established by measuring the NO, NO2 concentration and calculating the NO2/NOx ratio based on the catalyst temperature and exhaust mass flow rate. Also, based on the measured NO2/NOx ratio data, a mathematical model was proposed to predict the NO2/NOx ratio at SCR catalyst, and the suitability of the model was verified through steady-state and transient mode. As a result of comparing the NO2/NOx ratio measured at the DOC outlet under the steady-state condition to two model values separately, the R2 was 0.9811 for the 3D map model and 0.9303 for the mathematical model. And in the case of the NO2/NOx ratio measured at the DPF outlet, the R2 was 0.9797 for the 3D map model and 0.935 for the mathematical model. It was confirmed that the R2 with the model value of the 3D Map of the mathematical model in the transient mode is 0.957, which shows high reliability.

Air Pollutants Tracing Model using Perceptron Neural Network and Non-negative Least Square

  • Yu, Suk-Hyun;Kwon, Hee-Yong
    • 한국멀티미디어학회논문지
    • /
    • 제16권12호
    • /
    • pp.1465-1474
    • /
    • 2013
  • In this paper, air pollutant tracing models using perceptron neural network(PNN) and non-negative least square(NNLS) are proposed. When the measured values of the air pollution and the contribution concentration of each source by chemical transport modeling are given, they estimate and trace the amount of the air pollutants emission from each source. Two kinds of emissions data are used in the experiments : CH4 and N2O of Geumgo-dong landfill greenhouse gas, and PM10 of 17 areas in Northeast Asia and eight regions of the Korean Peninsula. Emission values were calculated using pseudo inverse method, PNN and NNLS. Pseudo inverse method could be used for the model, but it may have negative emission values. In order to deal with the problem, we used the PNN and NNLS methods. As a result, the estimation using the NNLS is closer to the measured values than that using PNN. The proposed tracing models have better utilization and generalization than those of conventional pseudo inverse model. It could be used more efficiently for air quality management and air pollution reduction.

신도시 계획단계에서의 교통부문 온실가스 배출량 산정 및 감축효과 분석방법론 연구 (Estimation of Greenhouse Gas Emissions from Transport Sector in New Town Development)

  • 한상진;박경욱;박수진
    • 환경정책연구
    • /
    • 제12권4호
    • /
    • pp.45-69
    • /
    • 2013
  • 2020년까지의 국가온실가스 감축목표를 달성하기 위해서는 도시교통부문에서 상당한 감축노력이 필요하다. 특히 새롭게 개발되는 신도시의 온실가스 배출량을 줄이는 노력은 이러한 목표달성에 도움이 된다. 본 연구는 Schipper, celine, Roger(2000)가 개발한 교통부문 온실가스 배출량 산정의 일반모형을 토대로 신도시 개발 계획에 따른 교통부문의 베이스라인 온실가스 배출량을 산정한다. 이를 위해 우리나라에서 이용이 가능한 교통부문의 통계자료를 어떻게 활용할 수 있는지 제시한다. 이 과정에서 차종별, 대-km별 온실가스 배출원단위를 산정하였다. 아울러 다양한 교통부문의 온실가스 저감정책 효과를 분석하는데 개발된 모형이 활용될 수 있는지를 판단하기 위해 자전거 이용 활성화 정책을 사례로 온실가스 저감잠재량을 분석한다. 인천광역시 검단 1지구 신도시를 대상으로 적용한 결과 교통부문의 베이스라인 온실가스 배출량은 연간 약 36만 톤으로 추정되었고 자전거 이용 활성화 정책으로 5%의 자전거 수단분담율을 달성할 경우 연간 약 1,869톤의 온실가스를 줄일 수 있는 것으로 분석되었다.

  • PDF