• Title/Summary/Keyword: Emission Color

Search Result 444, Processing Time 0.021 seconds

Development of environmentally friendly inorganic fluorescent pigments, A3V5O14 (A = K and Rb) and Cs2V4O11: Crystal structure, optical and color properties (친환경 무기 형광 안료 A3V5O14 (A = K and Rb) and Cs2V4O11 개발: 결정구조, 광학적 특성 및 착색 특성)

  • Jeong, Gyu Jin;Kim, Jin Ho;Lee, Younki;Hwang, Jonghee;Toda, Kenji;Bae, Byoungseo;Kim, Sun Woog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.47-54
    • /
    • 2020
  • To develop the bright-vivid red- and yellow-inorganic fluorescent pigments with high luminescence properties, A3V5O14 (A = K and Rb) and Cs2V4O11 inorganic pigments were synthesized by a water assisted solid state reaction (WASSR) method and a conventional solid state reaction method. Although impurity peaks corresponding to the AVO3 and AV3O8 (A = K, Rb, and Cs) were observed in all samples prepared, the trigonal structure A3V5O14 (A = K and Rb) and orthorhombic structure Cs2V4O11 were successfully obtained as a main phase. These inorganic pigments showed the broad absorption band (under 550 nm) originated from CT transitions of VO4 polyhedron, and the strong broad red- and green-emission bands due to 3T21A1 and 3T11A1 transitions of the [VO4]3- group. The A3V5O14 (A = K and Rb) and Cs2V4O11 pigments showed a bright-vivid red- and yellow-body color, where the a* values of the A3V5O14 (A = K and Rb) were +35.5 and +45.9, respectively, and b* value of Cs2V4O11 pigments was +50.3. The L* values of the A3V5O14 (A = K and Rb) and Cs2V4O11 inorganic pigments were over +45. These results indicate that the A3V5O14 (A = K and Rb) and Cs2V4O11 inorganic pigments could be an attractive candidate as a bright-vivid red- and yellow inorganic pigments.

A Study on Contact Dermatitis-Causing Substances Concentration in Commercial Oxidative Hair-Coloring Products (유통 산화형 염모제의 접촉성피부염 유발물질 함량 연구)

  • Na, Young Ran;Koo, Hee Soo;Lee, Seung Ju;Kang, Jung Mi;Jin, Seong Hyeon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.203-214
    • /
    • 2014
  • We measured the contact dermatitis-causing substances concentrations in 28 commercial oxidative hair-coloring products. This study was aimed to provide the fundamental data about oxidative hair-coloring products. We selected 10 oxidation dyes (p-phenylenediamine, toluene-2,5-diamine, m-phenylenediamine, nitro-p-phenylenediamine, p-aminophenol, m-aminophenol, o-aminophenol, p-methylaminophenol, N,N'-bis(2-hydroxyethyl)-p-phenylenediamine sulfate, 2-methyl-5-hydroxyethylaminophenol) and 4 heavy metal (nikel; Ni, chromium; Cr, cobalt; Co, copper; Cu) as contact dermatitis-causing substances. To identify 10 oxidation dyes, hexane-2% sodium sulfite was used for the rapid and simple extraction and ultra performance liquid chromatography (UPLC) analysis was used for simultaneous analysis in 12 minutes. 10 oxidative dyes were detected as indicated on the product packaging and each concentration was lower than prescribed upper concentration limit by pharmaceutical manufacturing standards. And we analysed inductively coupled plasma-optical emission spectrophotometer (ICP-OES) for content search of heavy metal after microwave digestion. The heavy metal average concentration in oxidative hair-coloring products was 0.572 ${\mu}g/g$ for Ni, 3.161 ${\mu}g/g$ for Cr, 2.029 ${\mu}g/g$ for Co, 0.420 ${\mu}g/g$ for Cu, respectively. The average of concentration in powder type (henna) was higher than those of other foam and cream type oxidative hair-coloring products as follows; 1.800 ${\mu}g/g$ for Ni, 10.127 ${\mu}g/g$ for Cr, 7.082 ${\mu}g/g$ for Co, 1.451 ${\mu}g/g$ for Cu. Hair coloring products were classified into the six colors - black, dark brown, brown, dark brown, light brown, red brown and analyzed. Brown color had the highest average concentration of Co and the others had the highest average concentration of Cr.

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea (한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.498-506
    • /
    • 2019
  • This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)

Influence of Artificial Rainfall on Wheat Grain Quality During Ripening by Using the Speed-breeding System (세대단축시스템을 이용한 국내 밀 품종의 등숙기 강우에 의한 품질변이 평가)

  • Hyeonjin Park;Jin-Kyung Cha;So-Myeong Lee;Youngho Kwon;Jisu Choi;Ki-Won Oh;Jong-Hee Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.188-196
    • /
    • 2023
  • Wheat (Triticum aestivum L.) is an important crop in Korea, with a per capita consumption of 31.6 kg in 2019. In the southern region, wheat is grown after paddy rice, and it is harvested during the rainy season in mid-June. This timing, in combination with high humidity and untimely rainfall, activates the enzyme alpha-amylase, which breaks down starch in the wheat grains. As a result, sprouted grains have lower quality and value for flour. However, seeds that absorb water before sprouting are expected to maintain better quality. The aim of the study was to identify the critical period during wheat maturation when rainfall has the greatest impact on grain quality, to prevent price declines due to quality deterioration. Two wheat cultivars, Jokyoung and Hwanggeumal, were grown in a speed breeding room, and artificial rainfall was applied at different times after heading (30, 35, 40, 45, 50, and 55 days). The proportion of vitreous grains decreased from 40 to 55 days after heading (DAH). Both cultivars had chalky grain sections from 35 DAH, with Hwanggeumal having a higher proportion of vitreous grains. Starch degradation was observed using FE-SEM (Field Emission Scanning Electron Microscope) at 40 DAH for Jokyoung and 50 DAH for Hwanggeumal. Color measurements indicated increased L and E values from 40 DAH, with rain treatment at 55 DAH leading to a significant increase in L values for both cultivars. Ash content increased at 45 DAH, whereas SDSS decreased at 35 DAH. Overall, grain quality from 40 DAH until harvest was found to be affected to the greatest extent by direct exposure of the spikes to moisture. Red wheat showed better quality than white wheat. These findings have implications for the cultivation of high-quality wheat and can guide future research efforts in this area.