• Title/Summary/Keyword: Emission Color

Search Result 444, Processing Time 0.023 seconds

Chromatic Parameters in the Condition Monitoring of Synthetic Hydraulic Oils

  • Ossia, C.V.;Kong, H.;Han, H.G.;Markova, L.;Makarenko, V.
    • KSTLE International Journal
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Chromatic device was developed using light emitting diodes, optic fibers and photodiodes. Chromatic ratio and total contamination parameters based on transmitted light intensity in Red, Green, and Blue wavelengths were used for oil chemical and particulate contamination assessment. Chromatic ratio criterion was found independent of the particulate contamination of oil; but depended on chemical degradation, being more sensitive for synthetic than mineral hydraulic oil. Total contamination index of the sensor depended on both the chemical degradation and particulate contamination of the oil; being most sensitive in blue wavelength, and least in the red. Test results for synthetic hydraulic oils monitored corroborated with results of other tests such as viscosity, total acid number, elemental optical emission spectroscopy, particulate counts and UV-VIS photospectrometry. Chromatic ratio showed a clearer indication of oil degradation, compared to key monitoring parameters such as total acid number, viscosity and particle counts. The results showed that these parameters are effective criteria for the condition monitoring of synthetic hydraulic oils.

Low molecular amorphous spirobifluorene derivatives for blue electroluminescence

  • Lee, Hyo-Young;Oh, Ji-Young;Chu, Hye-Yong;Lee, Jeong-Ik;Kim, Seong-Hyun;Yang, Yong-Suk;Do, Lee-Mi;Zyung, Tae-Hyoung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2001.08a
    • /
    • pp.209-212
    • /
    • 2001
  • We report the synthesis and characterization of new alkoxy substituted spirobifluorene derivatives. The spiro compounds having alkoxy hydrocarbon chains were readily soluble in common organic solvents, having improved film-forming properties and had a significantly reduced tendency to crystallize, resulting in increasing their service lifetime. The results of DSC showed that it was amorphous. The optical and electroluminescent spectra were characterized. Electroluminescence (EL) properties of three-layer light emitting diodes (LED) of $ITO/TPD/spirobifluorene/Alq_3/LiF/Al$ as the active layer were characterized. Blue emission peaking of the EL spectrum of the three-layer device at 402 nm and a luminance of 3,125 $cd/m^2$ were achieved at a drive voltage 12.8 V. The luminous efficiency was obtained to be 1.7 lm/W. The color coordinate in CIE chromaticity is (0.16, 0.09), which is in a pure blue region. The external quantum efficiency was obtained to be 2.0%. The results indicate that the spirobifluorene compounds having alkoxy hydrocarbon chains are strongly potential blue emitters for LED applications.

  • PDF

Poly-Si TFT on Metal Foil for 5.6-inch UTL (ultra-thin and light) AMOLED

  • Jeong, Jae-Kyeong;Lee, Hun-Jung;Kim, Min-Kyu;Hwang, In-Chan;Kim, Tae-Jin;Shin, Hyun-Soo;Ahn, Tae-Kyung;Lee, Jae-Seob;Kwack, Jin-Ho;Jin, Dong-Un;Mo, Yeon-Gon;Chung, Ho-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.198-201
    • /
    • 2006
  • The optimization of poly-Si TFT process on metal foil for UTL AMOLED was systematically investigated. The improvement in device performance of poly-Si TFT on metal foil was achieved by optimizing the dopant activation condition and gate dielectric structure. Hence, the world first flexible full color 5.6-inch AMOLED with top emission mode on poly-Si TFT stainless steel foil is demonstrated.

  • PDF

White OLEDs with a Single Emissive Layer (단일발광층을 이용한 백색 OLED)

  • Chu, Hye-Yong;Lee, Jeong-Ik;Yang, Yong-Suk;Oh, Ji-Young;KoPark, Sang-Hee;Kim, Mi-Kyung;Hwang, Chi-Sun;Jung, Byung-Jun;Shim, Hong-Ku;Jang, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.43-46
    • /
    • 2004
  • We demonstrated efficient white light emitting OLEDs with a single emissive layer structure, which was blue-emitting 1,4-bis[2,2-diphenylvinyl]biphenyl (DPVBi) doped with blue luminescent amino-substituted distyrylarylene amine (DSA-amine) and red luminescent [2,6-bis[2-[5-(dibutylamino) phenyl]vinyl]-4H -pyran-4-ylidene]propanedinitrile (DADB). Through the optimization of the device structure, the white light emission with full visible spectral range was obtained. Its CIE color coordinates was (0.32,0.42) at 10 $mA/cm^2$ and the external quantum efficiency, the luminance efficiency and the luminance yield were 3.7 %, 3.3 lm/W and 9.0 cd/A, respectively.

  • PDF

Efficient Blue Light Emitting Diode by Using Anthracene Derivative with 3,5-Diphenylphenyl Wings at 9- and 10-Position

  • Kim, Yun-Hi;Lee, Sung-Joong;Jung, Sang-Yun;Byeon, Ki-Nam;Kim, Jeong-Sik;Shin, Sung-Chul;Kwon, Soon-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.443-446
    • /
    • 2007
  • The novel blue light emitting material, 9,10-bis(3',5'-diphenylphenyl)anthracene (BDA) was synthesized by Suzuki coupling reaction and characterized by the measurements of 1H NMR, 13C NMR and FT-IR. The new anthracene derivative, which contains anthracene as a main core unit and 3',5'-diphenylphenyl group derivative as wings, has high fluorescence yield, good thermal stability, and high glass transition temperature at 188 oC. With the newly non-doped blue emitting material in the multilayer device structure, it was possible to achieve the current efficiency of 3.0 cd/A. The EL spectrum of the ITO/CuPc/α-NPD/BDA/Alq3/LiF/Al device showed a maximum wavelength (λmax) at 440 nm. The emitting color of device showed the blue emission (x,y) = (0.18,0.19) at 10 mA/cm2 in CIE (Commission Internationale de l'Eclairage) chromaticity coordinates.

Performance of concrete modified with SCBA and GGBFS subjected to elevated temperature

  • Palaskar, Satish Muralidhar;Vesmawala, Gaurang R.
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.203-218
    • /
    • 2020
  • This research paper presents the outcomes in terms of mechanical and microstructural characteristics of binary and ternary concrete when exposed to elevated temperature. Three parameter were taken into account, (a) elevated temperature (i.e., 200, 400, 600 and 800℃) (b) binary concrete with cementitious material sugarcane bagasse ash (SCBA) and ground granulated blast furnace slag (GGBFS) replacement percentage (i.e., 0, 15, 20, 25 and 30%) and (c) ternary concrete with cementitious material SCBA and GGBFS replacement percentage (i.e., 0, 15, 20, 25 and 30%). A total of 285 standard cube specimens (150 mm × 150 mm × 150 mm) containing Ordinary Portland Cement (OPC), SCBA, and GGBFS were made. These specimens then exposed to several elevated temperatures for 2 h, afterword is allowed to cool at room temperature. The following basic physical, mechanical, and microstructural characteristics were then determined and discussed. (a) mass loss ratio, (b) ultrasonic pulse velocity (UPV) (c) physical behavior, (d) compressive strength, and (e) field emission scanning electron microscope (FESEM). It was found that compressive strength increases up to 400℃; beyond this temperature, it decreases. UPV value and massloss decrease with increase in temperature as well as the change in color and crack were observed at a higher temperature.

Micronization of Ceramic Pigments for Digital Ink-Jet Printing Process (디지털 프린팅 공정을 위한 세라믹 안료의 미립화 거동 분석)

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kwon, Jong-Woo;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • Ink-jet printing techniques with ceramic ink, which contains ceramic pigments as colorant, are in increasingly use in the ceramic industry. Generally, ceramic pigments that are produced by conventional method show diameters of several micrometers; these micrometer sized particles in the ink-jet printing process can cause undesirable behavior such as print head nozzle clogging. To prevent this problem, a particle size reduction process is required. In this study, CMYK (cyan, magenta, yellow, black) pigments were synthesized via solid state method. Each pigment particle was milled to submicron size by an attrition mill. The effects of micronizing on the morphology, mechanical property, crystal structure and color property of the CMYK ceramic pigments were investigated by field emission scanning electron microscopy (FE-SEM), particle size analysis (PSA), X-ray diffraction (XRD) and CIE $L^{\ast}a^{\ast}b^{\ast}$.

UV/blue Light-induced Fluorescence for Assessing Apple Quality (자외선 유도 형광의 사과 성숙도 평가 적용)

  • Noh, Hyun-Kwon;Lu, Renfu
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.124-131
    • /
    • 2010
  • Chlorophyll fluorescence has been researched for assessing fruit post-harvest quality and condition. The objective of this preliminary research was to investigate the potential of fluorescence spectroscopy for measuring apple fruit quality. Ultraviolet (UV) and blue light was used as an excitation source for inducing fluorescence in apples. Fluorescence spectra were measured from 'Golden Delicious' (GD) and 'Red Delicious' (RD) apples using a visible/near-infrared spectrometer after one, three, and five minutes of continuous UV/blue light illumination. Standard destructive tests were performed to measure fruit firmness, skin and flesh color, soluble solids and acid content from the apples. Calibration models for each of the three illumination time periods were developed to predict fruit quality indexes. The results showed that fluorescence emission decreased steadily during the first three minutes of UV/blue light illumination and was stable within five minutes. The differences were minimal in the model prediction results based on fluorescence data at one, three or five minutes of illumination. Overall, better predictions were obtained for apple skin chroma and hue and flesh hue with values for the correlation coefficient of validation between 0.80 and 0.90 for both GD and RD. Relatively poor predictions were obtained for fruit firmness, soluble solids content, titrational acid, and flesh chroma. This research has demonstrated that fluorescence spectroscopy is potentially useful for assessing selected quality attributes of apple fruit and further research is needed to improve fluorescence measurements so that better predictions of fruit quality can be achieved.

Sterilization Test of Microorganisms of Slow-released ClO2 Gas Gel-Pack (서방출형 이산화염소 가스 젤팩의 미생물 살균 시험)

  • Lee, Kyung-Haeng;Kim, Hong-Gil
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.2
    • /
    • pp.308-312
    • /
    • 2018
  • Even though chlorine dioxide ($ClO_2$) is utilized in a pre-treatment due to its effective sterilizing activity for microorganisms and its safety for food, it has a limitation in maintaining freshness of the food product. In this study, a low-concentration $ClO_2$ gas was produced in a packaging form of air-permeable gel pack so that it could be released continuously over several days. The amount of $ClO_2$ gas emission and microbial inactivation effect against foodborne pathogens were measured during the release of $ClO_2$ gas. As a result of measuring the change of color in order to confirm whether the chlorine dioxide gas was eluted in the form of a sustained release, the yellowness was significantly higher at higher gel pack concentration and higher value during storage periods. The slow-released $ClO_2$ gel-pack showed clear inactivation effect against Escherichia coli and Staphylococcus aureus with 99.9% inactivation efficiency. As a result of measuring the sterilization effect of Listeria monocytogenes by the concentration of chlorine dioxide gas, the sterilization effect was increased as the concentration was increased. Therefore, the slow-released $ClO_2$ gel-pack is feasible to apply for industry usages.

Properties of Merging Galaxies in the Nearby Universe

  • Park, Jong-Han;Ann, Hong-Bae;Kang, Hye-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.70.1-70.1
    • /
    • 2011
  • We have investigated properties of merging galaxies in the nearby universe, using Sloan Digital Sky Survey (SDSS) DR7. We first constructed two galaxy samples according to redshift range: Sample 1 for 0 ${\leq}$ z ${\leq}$ 0.025 and Sample 2 for 0.09 ${\leq}$ z ${\leq}$ 0.1. We then identified 118 and 184 merging galaxies among the galaxies in the Sample 1 and 2, respectively, and classified them into different merging types and stages by visual inspection of galaxy images. In the Sample 1, there are more wet mergers than dry mergers, while most merging galaxies in the Sample 2 are dry mergers. The color-magnitude diagram of the merging galaxies in our samples is comparable to that of normal galaxies. Dry mergers tend to locate in the red sequence, while wet and mixed mergers reside mostly in the blue cloud. Unlike some previous studies, we did not find a clear trend that the merger rate increases at higher redshift. However, it is difficult to make a direct comparison of the merger rate found in different studies, because it depends on the number of observed galaxies and criteria for merger classification. From the ratios of emission lines, we infer that the faction of merging galaxies with AGNs is higher in wet mergers than in other types.

  • PDF