• 제목/요약/키워드: Emission Color

검색결과 444건 처리시간 0.021초

Color Nanotube Field Emission Displays for HDTV

  • Dean, K.A.;Coll, B.F.;Dinsmore, A.;Howard, E.;Hupp, M.;Johnson, S.V.;Johnson, M.R.;Jordan, D.C.;Li, H.;Marshbanks, L.;McMurtry, T.;Tisinger, L.Hilt;Wieck, S.;Baker, J.;Dauksher, W. J.;Smith, S.M.;Wei, Y.;Weston, D.;Young, S.R.;Jaskie, J.E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1003-1007
    • /
    • 2005
  • We demonstrate color video displays driven by carbon nanotube electron field emitters. These nanotubes are incorporated into the device by selective growth using low temperature chemical vapor deposition. The device structure is simple and inexpensive to fabricate, and a 45 V switching voltage enables the use of low cost driver electronics. The prototype units are sealed 4.6” diagonal displays with 726 um pixels. They represent a piece of a 42” diagonal 1280x720 high definition television. The carbon nanotube growth process is performed as the last processing step and creates nanotubes ready for field emission. No activation post-processing steps are required, so chemical and particulate contamination is not introduced. Control of the nanotube dimension, orientation, and spatial distribution during growth enables uniform, highquality, color video performance.

  • PDF

Reduction of Temporal Image Sticking in AC Plasma Display Panels through the Use of High He Contents

  • Park, Choon-Sang;Kim, Sun-Ho;Kim, Jae-Hyun;Tae, Heung-Sik
    • Journal of Information Display
    • /
    • 제10권4호
    • /
    • pp.195-201
    • /
    • 2009
  • The temporal dark- and bright-image sticking phenomena were examined relative to the He contents under 11% Xe content in the 50-in HD and FHD AC-PDPs with a ternary gas mixture (Xe-He-Ne). To compare the temporal dark- and bright-image sticking phenomena under various He contents, the differences in the disappearing time, display luminance, perceived luminance, infrared emission, color coordinate, color temperature, and discharge current before and after discharge were measured under 0, 35, 50, and 70% He contents. It was found that temporal dark- and bright-image sticking were reduced in proportion to the increase in He %. Thus, a high He content contributes to the reduction of temporal dark- and bright-image sticking.

Development of a 14.1 inch Full Color AMOLED Display with Top Emission Structure

  • Jung, J.H.;Goh, J.C.;Choi, B.R.;Chai, C.C.;Kim, H.;Lee, S.P.;Sung, U.C.;Ko, C.S.;Kim, N.D.;Chung, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.793-796
    • /
    • 2005
  • A structure and a design of device were developed to fabricate large-scale active matrix organic light-emitting diode (AMOLED) display with good color purity and high aperture ratio. With these technologies, we developed a full color 14.1 inch WXGA AMOLED display. For the integration of OLED on an active matrix a-Si TFT backplane, an efficient top emission OLED is essential since the TFT circuitry covers a large position of the pixel aperture. These technologies will enable up the OLED applications to larger size displays such as desktop monitors and TVs.

  • PDF

White Light Emission from a Colloidal Mixture Containing ZnS Based Nanocrystals: ZnS, ZnS:Cu and ZnS:Mn

  • Lee, Jae Woog;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.189-196
    • /
    • 2014
  • Water dispersible ZnS based nanocrystals: ZnS (blue), ZnS:Cu (green) and ZnS:Mn (yellow-orange) were synthesized by capping the surface of the nanocrystals with a mercaptopropionic acid (MPA) molecule. The MPA capped ZnS based nanocrystal powders were characterized by using XRD, HR-TEM, EDXS, FT-IR, and FT-Raman spectroscopy. The optical properties of the colloidal nanocrystals were also measured by UV/Vis and photoluminescence (PL) spectroscopies in aqueous solvents. The PL spectra showed broad emission peaks at 440 nm (ZnS), 510 nm (ZnS:Cu) and 600 nm (ZnS:Mn), with relative PL efficiencies in the range of 4.38% to 7.20% compared to a reference organic dye. The measured average particle sizes from the HR-TEM images were in the range of 4.5 to 5.0 nm. White light emission was obtained by mixing these three nanocrystals at a molar ratio of 20 (ZnS):1 (ZnS:Cu):2 (ZnS:Mn) in water. The measured color coordinate of the white light was (0.31, 0.34) in the CIE chromaticity diagram, and the color temperature was 5527 K.

PFO : MEH-PPV 발광층과 정공 차단층을 이용한 고분자 발광다이오드의 특성 (Properties of Polymer Light Emitting Diodes Using PFO : MEH-PPV Emission Layer and Hole Blocking Layer)

  • 이학민;공수철;신상배;박형호;전형탁;장호정
    • 반도체디스플레이기술학회지
    • /
    • 제7권2호
    • /
    • pp.49-53
    • /
    • 2008
  • The yellow base polymer light emitting diodes(PLEDs) with double emission and hole blocking layers were prepared to improve the light efficiency. ITO(indium tin oxide) and PEDOT : PSS[poly(3,4-ethylenedioxythiophene) : poly(styrene sulfolnate)] were used as cathode and hole transport materials. The PFO[poly(9,9-dioctylfluorene)] and MEH-PPV[poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and guest materials, respectively. TPBI[Tpbi1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene] was used as hole blocking layer. To investigate the optimization of device structure, we prepared four kinds of PLED devices with different structures such as single emission layer(PFO : MEH-PPV), two double emission layer(PFO/PFO : MEH-PPV, PFO : MEH-PPV/PFO) and double emission layer with hole blocking layer(PFO/PFO : MEH-PPV/TPBI). The electrical and optical properties of prepared devices were compared. The prepared PLED showed yellow emission color with CIE color coordinates of x = 0.48, y = 0.48 at the applied voltage of 14V. The maximum luminance and current density were found to be about 3920 cd/$m^2$ and 130 mA/$cm^2$ at 14V, respectively for the PLED device with the structure of ITO/PEDOT : PSS/PFO/PFO : MEH-PPV/TPBI/LiF/Al.

  • PDF

단일 호스트와 3색 도펀트를 이용한 고휘도 백색 유기발광다이오드 제작과 특성 평가 (Fabrication and Characterization of High Luminance WOLED Using Single Host and Three Color Dopants)

  • 김민영;이준호;장지근
    • 한국재료학회지
    • /
    • 제26권3호
    • /
    • pp.117-122
    • /
    • 2016
  • White organic light-emitting diodes with a structure of indium-tin-oxide [ITO]/N,N-diphenyl-N,N-bis-[4-(phenylm-tolvlamino)-phenyl]-biphenyl-4,4-diamine [DNTPD]/[2,3-f:2, 2-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile [HATCN]/1,1-bis(di-4-poly-aminophenyl) cyclo -hexane [TAPC]/emission layers doped with three color dopants/4,7-diphenyl-1,10-phenanthroline [Bphen]/$Cs_2CO_3$/Al were fabricated and evaluated. In the emission layer [EML], N,N-dicarbazolyl-3,5-benzene [mCP] was used as a single host and bis(2-phenyl quinolinato)-acetylacetonate iridium(III) [Ir(pq)2acac]/fac-tris(2-phenylpyridinato) iridium(III) $[Ir(ppy)_3]$/iridium(III) bis[(4,6-di-fluoropheny)-pyridinato-N,C2] picolinate [FIrpic] were used as red/green/blue dopants, respectively. The fabricated devices were divided into five types (D1, D2, D3, D4, D5) according to the structure of the emission layer. The electroluminescence spectra showed three peak emissions at the wavelengths of blue (472~473 nm), green (495~500 nm), and red (589~595 nm). Among the fabricated devices, the device of D1 doped in a mixed fashion with a single emission layer showed the highest values of luminance and quantum efficiency at the given voltage. However, the emission color of D1 was not pure white but orange, with Commission Internationale de L'Eclairage [CIE] coordinates of (x = 0.41~0.45, y = 0.41) depending on the applied voltages. On the other hand, device D5, with a double emission layer of $mCP:[Ir(pq)_2acac(3%)+Ir(ppy)_3(0.5%)]$/mCP:[FIrpic(10%)], showed a nearly pure white color with CIE coordinates of (x = 0.34~0.35, y = 0.35~0.37) under applied voltage in the range of 6~10 V. The luminance and quantum efficiency of D5 were $17,160cd/m^2$ and 3.8% at 10 V, respectively.

Poly(fluorene)s for LED Applications

  • Lee, Jeong-Ik;Zyung, Tae-Hyoung;Klaerner, Gerrit;Miller, Robert D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.129-130
    • /
    • 2000
  • The emission color stability of poly(fluorene) derivatives upon thermal annealing or passage of current in an electroluminescent device is affected by the structure of the main chain polymer unit and particularly by the polymer chain end substituents. Proper attention to these features leads to colorfast blue emission in both photo- and electoluminescence. Furthermore, the spectral emission characteristics can be tuned by the incorporation of various comonomers. Preliminary single layer device studies validate the potential utility of poly(fluorene) homo and copolymers for OLED applications.

  • PDF

Composition-tunable emission colors of nitride phosphors

  • Xie, Rong-Jun;Hirosaki, Naoto;Takeda, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.50-51
    • /
    • 2009
  • Nitride Phosphors have recently been considered as a novel class of luminescent materials for white LEDs due to their promising luminescent properties. It is of great importance to tailor the emission color in order to meet the requirements for practical applications. The paper presents the results of tuning the emission colors of sialon phosphors through compositional tailoring.

  • PDF

거대 분자운의 원적외선 특성 (FAR-INFRARED CHARACTERISTICS OF GIANT MOLECULAR CLOUDS)

  • 정재훈;김현구;김봉규
    • 천문학논총
    • /
    • 제21권2호
    • /
    • pp.27-33
    • /
    • 2006
  • Infrared color-color diagram of 10 giant molecular clouds are examined to explore the dust property from the COBE Diffuse Infrared Background Experiment of the 100, 140, and $240{\mu}m$ emission. Four of them, Taurus, Mon OB1, Gem OB1, and Chameleon, show the anti-correlation in $R_{100/140}-R_{140/240}$ plot and the horizontal distribution in $R_{100/240}-R_{140/240}$ plot, which disagree with those of theoretical calculation. These could be explained by the depletion of $100{\mu}m$ and the excess of $140{\mu}m$ emission, though no existing dust model could support them. Mean color temperature of the anti-correlation region appears to be lower than that of the linear region, whose temperatures are 15.3, 17.0 K, respectively. And the linear region shows large dispersion in the plot of intensity relation. Both imply that a star formation would be more active, but not homogeneous, in the linear region compared to the anti-correlation region.

Carbon-Nanotube Based Field-Emission Displays for Large Area and Color Applications

  • Choi, Won-Bong;Lee, Nae-Sung;Yi, Whi-Kun;Jin, Yong-Wan;Choi, Yong-Soo;Han, In-Taek;Jang, Hyeong-Yong;Kim, Hoonn-Young;Kang, Jung-Ho;Yun, Min-Jae;Park, Sang-Hyeun;Yu, Se-Gi;Jang, Jae-Eun;You, Jang-Hun;Kim, Jong-Min
    • Journal of Information Display
    • /
    • 제1권1호
    • /
    • pp.59-62
    • /
    • 2000
  • The first 9-inch carbon nanotube based color field emission displays (FEDs) are integrated using a paste squeeze technique. The panel is composed of 576 x 242 lines with implementation of low voltage phosphors. The uniform and moving images are achieved only at $2V/{\mu}m$, This demonstrates a turning point of nanotube for large area and full color applications.

  • PDF