• Title/Summary/Keyword: Emission Calculation

Search Result 352, Processing Time 0.032 seconds

Study on the Simulation of the 4-Stroke Cycle Spark Ignition Engines(Second Paper) (4 행정 사이클 스파크 점화기관의 시뮬레이션에 관한 연구)

  • 윤건식;윤영환;우석근;신승한;서문진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.246-259
    • /
    • 2003
  • For predicting the performances of the four stroke cycle spark ignition engines. the gas behavior in the engine system has been analyzed. The calculations consist of two parts. the calculation of the gas behavior in the intake and exhaust systems which was described in the first paper, and the calculation of the variations of gas properties inside the engine cylinders. In this Paper the simulations for the in-cylinder processes were described for the MPI engine, naturally aspirated and turbocharged engines with a carburettor. With the combination of the calculations of the intake and exhaust systems and the calculation of the in-cylinder processes. the predictions of the engine Performances and the exhaust emission characteristics were carried out. And the result showed good agrements with the experimental results under wide range of operating conditions.

A Study on the Calculation Method of GHG Emission in Railroad Construction (철도건설단계에서의 온실가스 배출량 산정방안 연구)

  • Lee, Jae-Young;Jo, Su-Ik;Bae, Joon-Hyung;Jung, Woo-Sung;Lee, Cheol
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2353-2355
    • /
    • 2010
  • Since the efforts in transportation for counteracting Climate Change have been enhanced, it is necessary to reduce GHG emissions from railroad construction. The aim of this study was to develop the calculation method of GHG emissions at the step of railroad construction. Main emission source was the energy consumption from the used heavy equipments. Firstly, GHG inventory including equipments list, energy consumption, and work load was established with the detailed process using standard for the unit cost of construction. Also, the energy consumption of heavy equipments during track construction at A site was collected to compare with the field data. As a result, the GHG emissions between the estimated and the field were a little different, which was caused by the inaccurate field data. Therefore, it is important to manage data efficiently for the calculation of GHG emissions in the field of railroad construction.

  • PDF

A Study on the Calculation of GHG Emission for Domestic Railroad Transport based on IPCC Guideline (IPCC 가이드라인을 이용한 국내 철도수송에 따른 온실가스 배출량 산정에 관한 연구)

  • Lee, Jae-Young;Kim, Yong-Ki;Lee, Cheul-Kyu;Rhee, Young-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.408-412
    • /
    • 2012
  • Recently, new climate change mechanism after 2020 year has been accepted with the parties, and so government is pushing ahead the GHG reduction policies to achieve the effective results. Especially, it is essential to enhance the role of railroad in the public traffic system as well as to develop new cars with high energy efficiency for the GHG reduction of transportation sector. Thus, the calculation method of GHG emission of railroad should be established to manage the emission continuously. In this study, the calculation method of GHG emission of railroad was defined with Tier level considering its emission sources to refer to 2006 IPCC guideline for national GHG inventories. Also, the GHG emission of railroad at Tier 1 level was investigated using the activity data related to the amount of diesel and electricity consumption from 2008 to 2010. As a result, total GHG emission in 2010 was about 2,060 thousands ton CO2e, which have 73% of electricity and 27% of diesel. In future, the plans on the GHG reduction of railroad will be accomplished by the analysis of the detailed trends on the basis of the emission management of Tier 3 level under operating patterns. Therefore, it is important to develop the specific GHG emission factors of railroad in advance.

Comparison of Greenhouse Gas Emissions from Road Transportation of Local Government by Calculation Methods (배출량 산정방법에 따른 지자체 도로수송부문의 온실가스 배출량 산정 비교)

  • Kim, Ki-Dong;Ko, Hyun-Ki;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.405-415
    • /
    • 2011
  • The objective of this study was to compare greenhouse gas emissions from road transportation by calculation methods (Tier 1, Teir 2, and Tier 3). Tier 1 based on 2006 IPCC guidelines default emission factor and amount of fuel consumption. The Tier 2 approach is the same as Tier 1 except that country-specific carbon contents of the fuel sold in road transport are used. Tier 2 based on emission factor of guidelines for local government greenhouse gas inventories (Korea Environment Corporation), the fuel consumption per one vehicle, and the registered motor vehicles. The Tier 3 approach requires detailed, country-specific data to generate activity-based emission factors for vehicle subcategories (National Institute of Environmental Research) and may involve national models. Tier 3 calculates emissions by multiplying emission factors by vehicle activity levels (e.g., VKT) for each vehicle subcategory and possible road type. VKT was estimated by using GIS road map and traffic volume of the section. The GHG average emission rate by the Tier 1 was 728,857 $tonCO_2eq$/yr, while Tier 2 and Tier 3 were 864,757 $tonCO_2eq$/yr and 661,710 $tonCO_2eq$/yr, respectively. Tier 3 was underestimated by 10.1 and 20.7 percent for the GHG emission observed by Tier 1 and Tier 2, respectively. Based on this study, we conclude that Tier 2 is reasonable GHG emissions than Tier 1 or Tier 3. But, further study is still needed to accurate GHG emission from Tier 3 method by expanding the traffic survey area and developing the model of local road traffic.

Studies of $VOC_s$ Emission Rate Calculation in the Kwang-ju Area (광주지역의 $VOC_s$ 배출량산정에 관한 연구)

  • 이영재;신대윤
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2000
  • This study was conducted from January to December in Kwang-ju city, 1999. Calculated methods were studied by emission factors in each industrial species. The results was that total emission rate of VOC was calculated at a mount of 12305 ton/year as coating(49.4) > vehicles(27.4) > gasoline vapors(6.1) > petroleum refineries(5.6) > graphic arts(4.4) > road covering(4.1) > dry cleang(3.0%) respectively. In vehicles emission rate, passenger car and taxi were about 2,700 ton/yr(60%) of total vehicle emission(3,300 ton/yr). The amount of building emission rate was about 1,900 ton/yr(30%) of total coating emission 6,083 ton/yr.

  • PDF

GHGs Emissions Calculation Method and Influence Factors (온실가스 배출량 산정 방법 및 영향 요인 연구)

  • Choi, Seonghun;Chang, Hyunho;Yoon, Byungjo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.550-557
    • /
    • 2020
  • Purpose: Greenhouse gases are one of the major causes of global warming, a global disaster. In this study, the priority that affects when calculating the GHG emissions in the road sector is accurately calculated based on the speed of individual vehicles from the existing section average speed. I have the purpose of finding a possible factor. Method: A comparative analysis is conducted between the conventional method of the general passage section, the rest area section, the entrance section, and the confluence section of the highway and the speed-based emission calculation method of individual vehicles. Result: As a result of analyzing a total of 6 sections of the Gyeongbu Expressway, it was found that the standard deviation of the speed and the congestion of the sections had a great influence. Conclusion: When comparing the existing GHG emission calculation method with the speed-based emission calculation method of individual vehicles, it is clear that the speed-based method of individual vehicles is more precise. However, since it is difficult to apply it all over the country, this study compares the existing method with the speed-based method of individual vehicles and presents factors that have a significant difference.

A Development of Lagrangian Particle Dispersion Model (Focusing on Calculation Methods of the Concentration Profile) (라그란지안 입자확산모델개발(농도 계산방법의 검토))

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.757-765
    • /
    • 1999
  • Lagrangian particle dispersion model(LPDM) is an effective tool to calculate the dispersion from a point source since it dose not induce numerical diffusion errors in solving the pollutant dispersion equation. Fictitious particles are released to the atmosphere from the emission source and they are then transported by the mean velocity and diffused by the turbulent eddy motion in the LPDM. The concentration distribution from the dispersed particles in the calculation domain are finally estimated by applying a particle count method or a Gaussian kernel method. The two methods for calculating concentration profiles were compared each other and tested against the analytic solution and the tracer experiment to find the strength and weakness of each method and to choose computationally time saving method for the LPDM. The calculated concentrations from the particle count method was heavily dependent on the number of the particles released at the emission source. It requires lots fo particle emission to reach the converged concentration field. And resulting concentrations were also dependent on the size of numerical grid. The concentration field by the Gaussian kernel method, however, converged with a low particle emission rate at the source and was in good agreement with the analytic solution and the tracer experiment. The results showed that Gaussian kernel method was more effective method to calculate the concentrations in the LPDM.

  • PDF

Investigation on Radiation Characteristics of 42″ AC-PDP (42″ AC-PDP의 방사특성에 대한 연구)

  • Lim Heon-Yong;Kim Min-Seok;Park Dongwook;Lee Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.841-847
    • /
    • 2004
  • EMI emission characteristics of 42" AC-PDP panel are investigated in this paper. First, EMI emission source was modeled the scan electrode and the sustain electrode to a simple electric and magnetic dipole type radiator. Second, EMI emission source was modeled as reconfigured the scan electrode and the sustain electrode. The primary source of EMI emission was investigated using FEM calculation of the wave impedance and 3 dB beam width. The third. the EMI emission level was estimated using the measured sustain electrode current. Also, EMI emission level of 42" AC-PDP was measured. The results show that the calculated EMI emission level from the simple electric dipole model was shown to agree with that from the corresponding FEM simulation.

Calculation of CO2 Emission w.r.t. Instantaneous Generator Output using Input-output Coefficients of Thermal Power Plant (화력발전소 입출력 특성계수를 이용한 순시 발전출력 대비 CO2 대기배출량 계산)

  • Lee, Sang-Joong;Lim, Jeong-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.120-125
    • /
    • 2007
  • Burning the fossil fuel in the thermal power plants causes green house gas emission. Monitoring of CO2 emission of the thermal power plants is growing more important because the amount produced by them is more than 20 percent of national total emission. This paper proposes a method to calculate the amount of the CO2 emission w.r.t. generator[MW] output using the input-output coefficients of the thermal power plants. The power flow computation together with the CO2 emission calculation are demonstrated in a sample power system.