• Title/Summary/Keyword: Emergency Power Generator

Search Result 124, Processing Time 0.028 seconds

Research on Line Overload Emergency Control Strategy Based on the Source-Load Synergy Coefficient

  • Ma, Jing;Kang, Wenbo;Thorp, James S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1079-1088
    • /
    • 2018
  • A line overload emergency control strategy based on the source-load synergy coefficient is proposed in this paper. First, the definition of the source-load synergy coefficient is introduced. When line overload is detected, the source-load branch synergy coefficient and source-load distribution synergy coefficient are calculated according to the real-time operation mode of the system. Second, the generator tripping and load shedding control node set is determined according to the source-load branch synergy coefficient. And then, according to the line overload condition, the control quantity of each control node is determined using the Double Fitness Particle Swarm Optimization (DFPSO), with minimum system economic loss as the objective function. Thus load shedding for the overloaded line could be realized. On this basis, in order to guarantee continuous and reliable power supply, on the condition that no new line overload is caused, some of the untripped generators are selected according to the source-load distribution synergy coefficient to increase power output. Thus power supply could be restored to some of the shedded loads, and the economic loss caused by emergency control could be minimized. Simulation tests on the IEEE 10-machine 39-bus system verify the effectiveness and feasibility of the proposed strategy.

A Study on the Power Plant Application of Engine Condition Diagnosis Technology for Diesel Generator (디젤발전기 엔진 상태 진단 기술의 발전소 적용 연구)

  • Choi, Kwang-Hee;Lee, Sang-Guk
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.17-22
    • /
    • 2013
  • Diesel generator of nuclear power plant has a role for supply of emergency electric power to protect reactor core system in event of loss of off-site power supply. Therefore diesel generator should be tested periodically to verify the function that can supply specified frequency and voltage at design power level within limited time. For this purpose, appropriate maintenances in case that abnormal conditions were found are required in allowed time. In this paper, results of development of engine condition diagnosis technology and study on power plant of its technology for diesel generator are described.

Soft Start System of Induction Motor using Emergency Generator (비상 발전기를 이용한 유도전동기의 소프트 기동 시스템)

  • Hwangbo, Chan;Ko, Jae-Ha;Lee, Jung-Hwan;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.433-441
    • /
    • 2022
  • In general, in an emergency generator system for an electric facility including an induction motor load, an emergency power generation facility larger than the facility load capacity is built due to the initial starting current of the induction motor. In order to reduce this economic burden, various methods to reduce the inrush current of induction motors are applied to suppress the additional expansion of generators due to the reduction of power generation facilities and the increase in electrical facilities. Among these methods, when a system with a built-in soft start function of an induction motor using an inverter is built, it is the best way to reduce the inrush current of the induction motor to less than the rated current. However, in this case, the installation cost of the inverter to drive the induction motor increases. This paper proposes a soft start method of an induction motor by expanding the frequency and voltage control operation area of an emergency generator. In addition, proposed a speed calculation method based on power factor information, which is essential information for stable soft start of an induction motor, and a method for generating a speed command value of the governor for starting with maximum torque.

Development of Digital controller for emergency power generating system Using Micro-Controller (마이크로컨트롤러를 이용한 비상발전계통의 제어장치 개발)

  • Jeong, Eull-Gi;Jeon, Hee-Jong;Shon, Jin-Geun;Na, Chae-Dong;Lee, Seong-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.100-102
    • /
    • 2001
  • This paper resents digital controller of emergency power generator system. The controller offers an integrated alternative for Genset control, metering and remote monitoring. Proposed controller used 80c196kc one chip microprocessor for digital control, it measures parameters of generator and provides output signals to control starting and stopping of generator. Additionally protection and alarm functions are considered to system stability. As almost parts of controller are embedded by digital microprocessor and FPGA techniques, the controller has a more flexible feature and an improvement of precision. The developed system has a big merit economically and is suitable for any kW size generator.

  • PDF

Construction Of Uninterruptible Power System by Reliable Incoming Power Method (신뢰도 높은 수전방식에 의한 무(無)정전 전원설비 구축방안)

  • Choi, Jin-Sung;Lee, Sang-Joong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.367-371
    • /
    • 2007
  • Large capacity UPS and emergency generators are being installed and operated at the specific target of important electric facilities that need uninterruptible power supply by the method of countermeasure against power failure for the less reliable incoming power method. Recently, CTTS (Closed Transition Transfer Switch) is being used as uninterruptible power transfer switch at the Common sources of electricity, generator and multiple generators. In this paper, construction plans for uninterruptible power supply system has been suggested in which CTTS has been applied to the secondary of incoming power generator for reliable common dual system method. By briefing the construction of incoming power facilities, large capacity UPS, emergency generator installation space and investment saving effects can be achieved.

  • PDF

Safety Assessment for Emergency Diesel Generator(EDG) Allowed Outage Time(AOT) Extension using Risk-informed (리스크정보를 활용한 비상디젤발전기 허용정지시간 연장시 안전성평가)

  • Lim, Hyuk-Soon;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.118-122
    • /
    • 2010
  • In order to provide the necessary operation flexibility during the Nuclear power operation, the extension of existing allowed outage time(AOT) is needed. The extension of AOT affects the Nuclear power plant safety. The validity of changed technical specification requirements should be proved by the safety assessments. In this paper, we evaluated the extension of emergency diesel generator AOT for a single inoperable emergency diesel generator(EDG) from 3days to 7days, 10days and 14days. Finally, the AOT extension contributes the NPP performances through decreasing the unexpected plant trips, reinforcing maintenance and avoiding risks due to unnecessary operation mode changes when the NPP is under the surveillance tests or maintenance.

Seismic performance of emergency diesel generator for high frequency motions

  • Jeong, Young-Soo;Baek, Eun-Rim;Jeon, Bub-Gyu;Chang, Sung-Jin;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1470-1476
    • /
    • 2019
  • The nuclear power plants in South Korea have been designed in accordance with the U.S. Regulatory Guide 1.60 (R.G 1.60) design spectrum of which the peak frequency range is 2-10 Hz. The characteristics of the earthquakes at the Korea nuclear power plant sites were observed to be closer to that of Central and Eastern United States (CEUS) than the R.G 1.60, which is a lower amplification in a low frequency range, and a higher amplification in a high frequency range. The possibility of failure for sensitive power plant components in the high frequency range has been considered and evaluated. In this study, in order to improve the reliability of nuclear plant and administrative control procedures, seismic tests of an emergency diesel generator (EDG) were conducted using a shaking table under both high and low frequency ranges. From the tests, oil/lubricant leaks from the bolt connections, the fuel filter and the fuel inlet were observed. Therefore, the check list of nuclear plant components after an earthquake should include bolt connections of EDG as well as anchor bolts.

Analysis of the Virtual Power Plant Model Based on the Use of Emergency Generators in South Korea

  • Chung, Beom Jin;Kim, Chang Seob;Son, Sung-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.38-46
    • /
    • 2016
  • This study analyzes the economic efficiency of the virtual power plant (VPP) model that aims to integrate a number of emergency generators installed at the consumer end and operate them as a single power plant. Several factors such as the demand response benefits from VPP operation and costs incurred for converting emergency generators into VPP are considered to assess the economic efficiency of the proposed VPP model. Scenarios for yearly VPP conversion are prepared based on the installed capacities of the emergency generators distributed in South Korea, while the costs and benefits are calculated from the viewpoints of participants and power companies in accordance with California Test Methods. Furthermore, a sensitivity analysis is conducted on the cost factors among those affecting the economic efficiency of VPP business because these two factors have a great impact on benefits.

Development of PSCAD Simulation Model for Doubly-fed Induction-type Wind Power Generation System (이중여자 유도형 풍력 발전기의 PSCAD 시뮬레이션 모델 개발)

  • Jeong, Byoung-Chang;Kim, Hee-Jung;Chung, Yong-Ho;Jeon, Young-Soo;Kwak, No-Hong;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.261-264
    • /
    • 2006
  • In this paper, doubly-fed induction-type wind power generation system simulation model for grid connection is developed. The simulation model is based on PSCAD/EMTDC and consists of rotor-blade, blade controller, generator power converter and generator controller Blade controller controls the blade pitch angle for starting, peak power limiting and emergency condition. Generator controller controls the generator output power to maximize the system efficiency. Simulation results are shown for the variable wind speed conditions. The simulation model can be utilized for study of actual interaction between wind turbine and grid for reliable operation and protection of power system.

  • PDF

A Study of Analysis for Small Buried Type Permanent Magnet Synchronous Generator Considering Armature Resistance Effect (전기자 저항의 영향을 고려한 소형 영구자석 매입형 동기발전기 정상상태 특성 해석 연구)

  • Hong, Sun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.380-383
    • /
    • 2012
  • Small permanent magnet generator can be used not only as an emergency power source but also an exciting power source of generator for small generating systems because it does not need the external exciting power source. Especially the air-gap flux density of the buried PM synchronous generator can be increased more than that of the permanent magnet. In this study, the analysis of the small buried type PM synchronous generator is performed. From the phasor diagram considering armature resistance for exact analysis, analytic equations are induced and the efficiency, developed voltage, load current are calculated. The experimental results are compared with the calculated results for the appropriateness.