• Title/Summary/Keyword: Embryonic effect

Search Result 393, Processing Time 0.029 seconds

Exogenous Nitric Oxide Donation During In Vitro Maturation Improves Embryonic Development after Parthenogenesis and Somatic Cell Nuclear Transfer in Pigs

  • Elahi, Fazle;Shin, Hyeji;Lee, Joohyeong;Lee, Seung Tae;Lee, Geun-Shik;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.211-220
    • /
    • 2018
  • Nitric oxide (NO) has an important role in oocyte maturation and embryonic development in mammals. This study examined the effect of exogenous NO donor S-nitroso-N-acetylpenicillamine (SNAP) in a maturation medium on meiotic progression and embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) in pigs. When oocytes were exposed to $0.1{\mu}M$ SNAP for first 22 h of in vitro maturation (IVM) in Experiment 1, SNAP significantly improved blastocyst development in both defined and standard follicular fluid-supplemented media compared to untreated control (48.4 vs. 31.7-42.5%). SNAP treatment significantly arrested meiotic progression of oocytes at the germinal vesicle stage at 11 h of IVM (61.2 vs. 38.7%). However, there was no effect on meiotic progression at 22 h of IVM (Experiment 2). In Experiment 3, when oocytes were treated with SNAP at 0.001, 0.1 and $10{\mu}M$ during the first 22 h of IVM to determine a suitable concentration, $0.1{\mu}M$ SNAP (54.2%) exhibited a higher blastocyst formation than 0 and $10{\mu}M$ SNAP (36.6 and 36.6%, respectively). Time-dependent effect of SNAP treatment was evaluated in Experiment 4. It was observed that SNAP treatment for the first 22 h of IVM significantly increased blastocyst formation compared to no treatment (57.1% vs. 46.2%). Antioxidant effect of SNAP was compared with that of cysteine. SNAP treatment significantly improved embryonic development to the blastocyst stage (49.1-51.5% vs. 34.4-37.5%) irrespective of the presence or absence of cysteine (Experiment 5). Moreover, SNAP significantly increased glutathione (GSH) content and inversely decreased the reactive oxygen species (ROS) level and mitochondrial oxidative activity in IVM oocytes. SNAP treatment during IVM showed a stimulating effect on in vitro development of SCNT embryos (Experiment 7). These results demonstrates that SNAP improves developmental competence of PA and SCNT embryos probably by maintaining the redox homeostasis through increasing GSH content and mitochondrial quality and decreasing ROS in IVM oocytes.

Antioxidative and Antimutagenic Activity of Ethanolic Extracts from Giant Embroynic Rices (거대배아미 에탄올 추출물의 항산화활성 및 항변이원성)

  • Kang, Mi-Young;Lee, Yun-Ri;Koh, Hee-Jong;Nam, Seok-Hyun
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.61-66
    • /
    • 2004
  • 70% ethanolic extracts were prepared from the three mutant rice cultivars with giant embryo termed Shinsunchal-giant embryonic rice, Whachung-giant embryonic rice and Nampung-giant embryonic rice, and its antioxidative and antimutagenic properties were evaluated and compared. For analysing antioxidativity, various antioxidative indices, such as electron donating ability to DPPH radical, scavenging capacity to hydroxyl radicals generated by Fenton reaction, scavenging capacity to superoxide radicals generated by HPX/XOD system, inhibitory effect on autoxidation of linoleic acid and inhibitory effect on membrane lipid peroxidation derived from rabbit erythrocyte ghost, were determined. For analysing antimutagenicity, suppressive effects on mutagenesis induced by the chemical mutagen, mitomycin C, were measured using E. coli PQ 37 as a indicator cell. The results showed that for both antioxidativity and antimutagenicity the giant embryonic rices were more effective compared to the general cooking rice, Among the giant embryonic rice cultivars, Nampung-giant embryonic rice tended to be most effective, showing its scavenging activity to DPPH radical, superoxide radical and hydroxyl radical, and inhibitory activity to lipid peroxidation was 2,3-, 3,3-, 1.7-, and 2.5-fold greater than those of normal rice, respectively.

Primary Cultured Brain Cells as Screening Methods for Natural Products Acting on Glutamatergic Neurons (일차배양 뇌세포를 이용한 글루타메이트성 신경에 작용하는 천연물의 검색방법)

  • 박미정;김소라;문애리;김승희;김영중
    • YAKHAK HOEJI
    • /
    • v.39 no.4
    • /
    • pp.444-449
    • /
    • 1995
  • Primary cultures of rat cortical and chicken embryonic brain cells were employed to establish a reliable screening method for natural products blocldng or enhancing glutamate-induced neurotoxicity. Exposure of primary cultured rat cortical cells or chicken embryonic brain cells to high dose of glutamate resulted in the fragmentation of neutites and consequent neuronal death. The level of cytoplasmic lactate dehydrogenase(LDH), indicator for cell survival in cultures, was significantly reduced at exposure to glutamate. For the practical application of the methods, series of concentrations of plants extracts and positive control were applied prior to the glutamate insult on primary cultures of rat cortical and chicken embryonic, brain cells. Relative LDH level in cells was measured for the estimation of the effect of the test materials on the glutamatergic neurons. The validity of the present screening method for natural products acting on glutamatergic neurons was examined with dextromethorphan, a known glutamatergic antagonist. The treatment of 100 $\mu{M}$ dextromethorphan prevented the reduction of LDH in rat cortical and chicken embryonic brain cells caused by glutamate insult keeping 60% and 90% of LDH level in normal control, respectively. Above results indicate that primary cultures of rat cortical and chicken embryonic brain cells could be proper systems for the screening of potential natural agents acting on glutamatergic, neurons. Between the two types of cultures, primary culture of chicken embryonic brain cells seemed to be a better system for the primary screening, since it is technically easier and economical compared to that of rat cortical cells.

  • PDF

Forced Expression of HoxB4 Enhances Hematopoietic Differentiation by Human Embryonic Stem Cells

  • Lee, Gab Sang;Kim, Byung Soo;Sheih, Jae-hung;Moore, Malcolm AS
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.487-493
    • /
    • 2008
  • HoxB4 has been shown to enhance hematopoietic engraftment by hematopoietic stem cells (HSC) from differentiating mouse embryonic stem cell (mESC) cultures. Here we examined the effect of ectopic expression of HoxB4 in differentiated human embryonic stem cells (hESCs). Stable HoxB4-expressing hESCs were established by lentiviral transduction, and the forced expression of HoxB4 did not affect stem cell features. HoxB4-expressing hESC-derived CD34+ cells generated higher numbers of erythroid and blast-like colonies than controls. The number of CD34+ cells increased but CD45+ and KDR+ cell numbers were not significantly affected. When the hESC derived CD34+ cells were transplanted into $NOD/SCID{\beta}2m-/-$ mice, the ectopic expression of HoxB4 did not alter their repopulating capacity. Our findings show that overexpression of HoxB4 in differentiating hESCs increases hematopoietic colony formation and hematopoietic cell formation in vitro, but does not affect in vivo repopulation in adult mice hosts.

15-Deoxy-$PGJ_2$ Stimulates Neuronal Differentiation of Embryonic Midbrain Cells by Up-regulation of PPAR-gamma Activity via the JNK-dependent Pathway

  • Park, Ki-Sook;Lee, Sang-Min;Lee, Rhee-Da;Han, Soon-Young;Park, Kui-Lae;Yang, Ki-Hwa;Song, Yuen-Sook;Moon, Dong-Chuel;Song, Suk-Gil
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.200.2-201
    • /
    • 2003
  • The effect of 15-deoxy-PGJ$_2$ on the differentiation of embryonic midbrain cells into dopaminergic neuronal cells, and the relationship between cell differentiation with activation of PPAR-yand possible signal pathway were investigated, 15-Deoxy-PGJ$_2$ increased neurite extension, a typical characteristics of the differentiation of embryonic midbrain cells isolated from 12 day's rat embryos in a dose-dependent manner. (omitted)

  • PDF

Effects on Pregnancy of Reproductive Environments by Ultrasonography in Thoroughbred Mares (초음파술에 의한 더러브렛 암말의 번식환경이 임신에 미치는 영향)

  • 양영진;조길재;신상태;남치주
    • Journal of Veterinary Clinics
    • /
    • v.20 no.1
    • /
    • pp.121-130
    • /
    • 2003
  • The purpose of this study was to investigate the effect of breeding conditions on reproductive efficiency of thoroughbred broodmares by ultrasonography. The mean age and breeding career of 120 mares used in this study were 11 years old and 6 years, respectively. The average pregnancy rate and embryonic loss rate were 87.5%, 11.8%. The groups that were 8-10 years old, 4-6 years, maiden and mated on May showed the highest pregnancy rate. While mares mated on 1st estrus post partus had the highest ovulation rate but showed the highest embryonic loss rate and he lowest pregnancy rate. And broodmares that had more intrauterine foreign bodies such as cyst and fluid with age and breeding career had represented lower pregnancy rate and higher embryonic loss rate than those having normal uterine condition. These results suggest that the breeding condition and uterine environment of mares had a significant influence on reproductive efficiency.

A Dtudy on the Effect of Polyamines of Korean Red Ginseng on the Growth of Cultured Chichen Embryonic Muscle Cells (홍삼 Polyamine 계 성분이 배양한 계배의 근육세포 성장에 미치는 영향)

  • 구향자;김영중
    • YAKHAK HOEJI
    • /
    • v.31 no.5
    • /
    • pp.296-301
    • /
    • 1987
  • Polyamines of Korean red ginseng were extracted with 5% trichloroacetic acid and purified by ion exchange chromatography using Dowex-50Wx8 resin. Four spots having R$_f$ values of 0.19, 0.28, 0.35, and 0.45 were detected. It was observed under microscopy that those polyamines stimulated the growth and differentiation of chicken embryonic muscle cell. The development of muscle cells from the stage of myoblast to that of myotube was found to be enhanced by those polyamines. It was also observed that those polyamines most likely lengthened, the life-span of the cultured chicken embryonic skeletal muscle cells.

  • PDF

Studies on the Effects of Body Fluids on the Developmental Physiology of Early Preimplantation Embryos. I. Effect of Serum on In Vitro Development of 1- and 2-Cell Mouse Embryos (체액이 초기배의 발생생리에 미치는 효과에 관한 연구. I. 생쥐 1- 및 2-세포배의 체외발생에서 배양액과 단백질원의 효과)

  • 정구민;임경순
    • Journal of Embryo Transfer
    • /
    • v.6 no.1
    • /
    • pp.33-40
    • /
    • 1991
  • In vitro developmental ability of early preimplantation monse embryos was shown to be depend on the embryonic stages, media and snpplements and their interaction(Experiment 1). The development of I-cell embryos were more promoted in the complex medinm(Ham's Fl0) than in the simple one(m-KRB), but that of 2-cell embryos showed the reverse effect. The bovine serum albumin(BSA) as a medium snpplement more promoted the development of I- and 2-cell embryos, compared with human fetal cord serum(HCS). On the other hand, the harmful effect of HCS was especially shown on the early cleavage in the embryonic development of the two stages. The effect of serum, in the respect of interaction between media and snpplements. was also more significantly appeared in m-KRB than Ham's Fl0. In the experiment 2, when the harmful effect of HCS was compared with that of fetal bovine serum(FBS), the former more promoted the development of l - and 2-cell embryos than the latter. The effect of HCS was more significantly shown in the development of I-cell than that of 2-cell embryos. Conclusively, as I- and 2-cell embryos were different in the requirements for the in vitro development. the optimal medium and supplement have to be selected for each embryonic stage. It is also respected to the better result if it take into consideration into the kinds of sera when serum is used for culture of early preimplantation embryos.

  • PDF

Efficient Production of Parthenogenetic Murine Embryonic Stem Cells by the Treatment of Pluripotin (SC-1) (Pluripotin(SC-1) 처리를 통한 단위발생 마우스 배아줄기세포 생산 효율 향상)

  • Kang, Hoin;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.171-174
    • /
    • 2012
  • Various small molecules can be used to control major signaling pathways to enhance stemness and inhibit differentiation in murine embryonic stem cell (mESC) culture. Small molecules inhibiting the fibroblast growth factor (FGF)/ERK pathway can preserve pluripotent cells from stimulation of differentiation. In this study, we aimed to evaluate the effect of pluripotin (SC-1), an inhibitor of the FGF/ERK pathway, on the colony formation of outgrowing presumptive mESCs. After plating the zona pellucida-free blastocyst on the feeder layer, attached cell clumps was cultured with SC-1 until the endpoint of the experiment at passage 10. In this experiment, when the number of colonies was counted at passage 3, SC-1-treated group showed 3.4 fold more mESC colonies when compared with control group. However, after passage 4, there was no stimulating effect of SC-1 on the colony formation. In conclusion, SC-1 treatment can be used to promote mESC generation by increasing the number of early mESC colonies.

Effect of Retinoic Acid and dibutyryl cyclic AMP on G1 Phase Associated Molecules during F9 Embryonic Carcinoma Cell Differentiation (Retinoic acid와 dibutyryl cyclic AMP가 F9 embryonic carcinoma cell 분화 중 G1 Phase 관련 분자에 미치는 영향)

  • 박귀례;김건홍;한순영;이유미;장성재
    • YAKHAK HOEJI
    • /
    • v.43 no.3
    • /
    • pp.378-384
    • /
    • 1999
  • Retinoic acid (RA) and dibutyryl cyclic AMP (dbcAMP) induce the differentiation of the multipotent embryonic carcinoma cell line, F9 cells, into parietal endoderm like cell. The F9 cells are highly proliferative doubling approximately 12 hourse. S Phase is predominant, lasting 10 hours and G2/M phase occupies most of the remaining cycle (2 hours) and G1 phase is nearly non-existent. In this study, we showed the effect of RA and dbcAMPon the cell cycle associated molecules (especially around G1 phase) during F9 cell differentiation. Differentiation of F9 cells was induced by the combined addition of RA ($10^{-7}M$) and dbcAMP (0.5mM), and cells were harvested daily up to 4 days. Flow cytometric analysis showed the prolongation of G1 phase around 30 hours after induction. Western blot analysis revealed that the amount of cyclin D1 and cdk2 were increased at day 4. However, histone H1 kinase activity of cdk2 was decreased. These data strongly suggest that RA and dbcAMP induce the growth arrest of F9 cells at G1 phase by decreasing the activity of cdk2, although they have increased the protein contents of cyclin D1 and cdk2. The reason for the discrepancy between the H1 kinase activity and protein contents are not clear yet.

  • PDF