• Title/Summary/Keyword: Embryo implantation

Search Result 228, Processing Time 0.029 seconds

Embryo sexing methods in bovine and its application in animal breed

  • Bora, Shelema Kelbessa
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.80-86
    • /
    • 2022
  • The ability to determine the sex of bovine embryos before the transfer is advantageous in livestock management, especially in dairy production, where female calves are preferred in milk industry. The milk production of female and male cattle benefits both the dairy and beef industries. Pre-implantation sexing of embryos also helps with embryo transfer success. There are two approaches for sexing bovine embryos in farm animals: invasive and non-invasive. A non-invasive method of embryo sexing retains the embryo's autonomy and, as a result, is less likely to impair the embryo's ability to move and implant successfully. There are lists of non-invasive embryo sexing such as; Detection of H-Y antigens, X-linked enzymes, and sexing based on embryo cleavage and development. Since it protects the embryo's autonomy, the non-invasive procedure is considered to be the safest. Invasive methods affect an embryo's integrity and are likely to damage the embryo's chances of successful transformation. There are different types of invasive methods such as polymerase chain reaction, detection of male chromatin Y chromosome-specific DNA probes, Loop-mediated isothermal amplification (LAMP), cytological karyotyping, and immunofluorescence (FISH). The PCR approach is highly sensitive, precise, and effective as compared to invasive methods of farm animal embryonic sexing. Invasive procedures, such as cytological karyotyping, have high accuracy but are impractical in the field due to embryonic effectiveness concerns. This technology can be applicable especially in the dairy and beef industry by producing female and male animals respectively. Enhancing selection accuracy and decreasing the multiple ovulation embryo transfer costs.

Implantation Rate and Clinical Pregnancy Rate According to Dosage and Timing of Progesterone Administration for Secretory Endometrial Preparation in Frozen-Thawed Embryo Transfer Cycles (동결보존 배아이식에서 분비기 자궁내막 유도시 프로게스테론 투여 방법에 따른 착상율과 임신율의 비교)

  • Park, Chan-Woo;Hur, Kuol;Kim, Moon-Young;Song, Hyun-Jung;Kim, Hye-Ok;Yang, Kwang-Moon;Kim, Jin-Yeong;Song, In-Ok;Yoo, Keun-Jae;Cheon, Kang-Woo;Byun, Hye-Kyung;Koong, Mi-Kyoung;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.3
    • /
    • pp.193-202
    • /
    • 2003
  • Objective: To evaluate the difference of implantation rate (IR) and clinical pregnancy rate (CPR) between two protocols of endometrial preperation in women undergoing frozen-thawed embryo transfer (FET) cycles. Methods: This study was performed during the different time periods: A retrospective study from January 2000 to June 2001 (phase I) and a prospective study from July 2001 to March 2002 (phase II). All the patients received estradiol valerate (6 mg p.o. daily) starting from day 1 or 2 of the menstrual cycle without pituitary down regulation. Progesterone was administered around day 14 after sonographic confirmation of endometrial thickness $\geq$7 mm and no growing follicle. In Group A (n=88, 99 cycles) of phase I, progesterone was administered i.m. at a dose of 50 mg daily from one day prior to thawing of pronuclear (PN) stage frozen embryo or three days prior to thawing of 6-8 cell stage frozen embryo and then each stage embryos were trasnsferred 2 days or 1 day later after thawing. In Group B (n=246, 299 cycles) of phase I, patients recieved progesterone 100 mg i.m. from one day earlier than group A; two days prior to PN embryo thawing, four days prior to of 6-8 cell embryo thawing. During the phase II, to exclude any differences in embryo transfer procedures, in Group 1 (n=23, 28 cycles) of phase II embryo was transfered by one who have used the progesterone protocol since the phase I. In Group 2 (n=122, 139 cycles) of phase II embryo was transfered by one who use the progesterone protocol from the phase II. Results: When compared across the phase and group, there were no significant differences in the characteristics. During the phase I, there were significant increase in IR (14.4% vs 5.9%, p=0.001) and CPR (28.3% vs 14.5%, p=0.000) in group A. During the phases II, IR (11.8% vs 10.6%) and CPR (27.6% vs 27.3%) show no differences between two groups. Conclusions: In FET cycles, IR and CPR are increased significantly by the change of dosage and timing of progesterone administraton. And the timing is considered to be more important factor because the dosage of progesterone did not affect implantation window in previous studies. Therefore, we suggest that progesterone administration in FET cycle should begin from one day prior to PN stage embryo thawing and three days prior to 6-8 cell stage embryo thawing.

Live birth in a woman with recurrent implantation failure and adenomyosis following transfer of refrozen-warmed embryos

  • Safari, Somayyeh;Faramarzi, Azita;Agha-Rahimi, Azam;Khalili, Mohammad Ali
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.3
    • /
    • pp.181-184
    • /
    • 2016
  • The aim was to report a healthy live birth using re-vitrified-warmed cleavage-stage embryos derived from supernumerary warmed embryos after frozen embryo transfer (ET) in a patient with recurrent implantation failure (RIF). The case was a 39-year-old female with a history of polycystic ovarian syndrome and adenomyosis, along with RIF. After ovarian hyperstimulation, 33 cumulus-oocyte complexes were retrieved and fertilized with conventional in vitro fertilization and intracytoplasmic sperm injection. Because of the risk of ovarian hyperstimulation syndrome, 16 grade B and C embryos were vitrified. After 3 and 6 months, 3 and 4 B-C warmed embryos were transferred to the uterus, respectively. However, implantation did not take place. Ten months later, four embryos were warmed, two grade B 8-cell embryos were transferred, and two embryos were re-vitrified. One year later, the two re-vitrified cleavage-stage embryos were warmed, which resulted in a successful live birth. This finding showed that following first warming, it is feasible to refreeze supernumerary warmed embryos for subsequent ET in patients with a history of RIF.

Preferred strategy for euploid single embryo transfer in advanced maternal age: Fresh versus frozen

  • Fatma Ozdemir;Gokalp Oner;Semra Kahraman;Yucel Sahin;Hakan Yelke
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.1
    • /
    • pp.85-90
    • /
    • 2024
  • Objective: The purpose of this study was to compare fresh and frozen-thawed euploid blastocyst transfer protocols following preimplantation genetic screening (PGS) in cases of advanced maternal age. Methods: A total of 330 patients were examined retrospectively. PGS was performed on the embryos of 146 patients for whom fresh transfers were chosen. In contrast, frozen-thawed euploid single embryo transfer (ET) was selected after PGS for 184 patients, and their embryos were vitrified. The percentage of euploid embryos and rates of implantation, pregnancy, and pregnancy continuity, as well as clinical and biochemical abortion rates, were compared. Results: The numbers of retrieved oocytes, metaphase II oocytes, and fertilized ova were greater in the frozen-thawed group. The percentages of euploid embryos were comparable between the fresh and frozen-thawed groups (32% vs. 34.8%, respectively). The rates of implantation (46.6%vs. 62.5%), pregnancy (50% vs. 66.8%), ongoing pregnancy (38.4% vs. 53.8%), and live birth percentage (37.0% vs. 53.8%) were significantly higher in the frozen-thawed group. However, no significant differences were found in the clinical and biochemical abortion rates. Conclusion: The use of frozen-thawed single euploid ET is associated with increased implantation and pregnancy rates compared to fresh single euploid ET with PGS.

The Role of the Endometrium and Embryo in Human Implantation (인간 착상 과정에 자궁내막과 배아의 역할)

  • Jee, Byung-Chul
    • Development and Reproduction
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Implantation itself is governed by an array of endocrine, paracrine and autocrine modulators, of embryonic and maternal origin. Window of implantation is the unique temporal and spatial expression of factors allows the embryo to implant via signaling, appositioning, attachment, and invasion in a specific time frame of $2{\sim}4$ days. When the embryo has arrived in the uterine cavity, a preprogrammed sequence of events occurs, which involves the production and secretion of a multitude of biochemical factors such as cytokines, growth factors, and adhesion molecules by the endometrium and the embryo, thus leading to the formation of a receptive endometrium. Cytokines such as LIF, CSF-1, and IL-1 have all been shown to play important roles in the cascade of events that leads to implantation. Integrin, L-selectin ligands, glycodelin, mucin-1, HB-EGF and pinopodes are involved in appositioning and attachment. The embryo also produces cytokines and growth factors (ILs, VEGF) and receptors for endometrial signals such as LIF, CSF-1, IGF and HB-EGF. The immune system and angiogenesis play an important role. The usefulness of these factors to assess endometrial receptivity and to estimate the prognosis for pregnancy in natural and artificial cycles remains to be proven. Integrins, pinopodes, glycodelin and LIF (from biopsies) are promising candidates; from uterine flushings, glycodelin and LIF are also candidates. The ideal serum marker is not available, but VEGF, glycodelin and CSF have some clinical implications. Further evaluation that includes larger groups of infertile women and fertile controls are needed to elucidate whether their presence in plasma, flushing fluid, or endometrial samples can be used as some kind of a screening tool to assess endometrial function and prognosis for pregnancy before and after artificial reproductive therapy. A better understanding of their function in human implantation may lead to therapeutic intervention, thereby improving the success rate in reproduction treatment. New molecular techniques are becoming available for measuring both embryonic and endometrial changes prior to and during implantation. The use of predictive sets of markers may prove to be more reliable than a single marker. Ultimately, the aim is to use these tools to increase implantation in artificial cycles and consequently improve live-birth rates.

  • PDF

Advantages of the outgrowth model for evaluating the implantation competence of blastocysts

  • Kim, Jihyun;Lee, Jaewang;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.2
    • /
    • pp.85-93
    • /
    • 2020
  • The implantation process is highly complex and difficult to mimic in vitro, and a reliable experimental model of implantation has yet to be established. Many researchers have used embryo transfer (ET) to assess implantation potential; however, ET with pseudopregnant mice requires expert surgical skills and numerous sacrificial animals. To overcome those economic and ethical problems, several researchers have tried to use outgrowth models to evaluate the implantation potential of embryos. Many previous studies, as well as our experiments, have found significant correlations between blastocyst outgrowth in vitro and implantation in utero by ET. This review proposes the blastocyst outgrowth model as a possible alternative to animal experimentation involving ET in utero. In particular, the outgrowth model might be a cost- and time-effective alternative method to ET for evaluating the effectiveness of culture conditions or treatments. An advanced outgrowth model and further culture of outgrowth embryos could provide a subtle research model of peri- and postimplantation development, excluding maternal effects, and thereby could facilitate progress in assisted reproductive technologies. Recently, we found that outgrowth embryos secreted extracellular vesicles containing specific microRNAs. The function of microRNAs from outgrowth embryos should be elucidated in further researches.

Influence of Maternal Age on Embryo Quality and the Frequency of Multiple Pregnancy in IVF-ET Program (시험관 아기 시술에서 여성의 연령이 수정란의 질과 다태 임신 발생에 미치는 영향)

  • Lee, Myeong-Seop;Park, Jang-Ok;Jung, Ji-Hak;Park, Jun-Suk;Kang, Hee-Gyoo;Kim, Dong-Hoon;Lee, Ho-Joon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.3
    • /
    • pp.261-265
    • /
    • 2000
  • Objective: This study was performed to evaluate the influence of maternal age on embryo quality and the frequency of multiple pregnancy in IVF-ET program. Method: 86 conventional IVF-ET cycles were divided into three groups according to the age by 5 year (group A: 26-30, group B: 31-35, group C: 36-40 yrs). The in vitro fertilization and development outcome (fertilization, cleavage and high quality embryo rate) and the pregnancy outcome (pregnancy, implantation, G-sac/high quality embryo and multiple pregnancy rate) were examined. And then, these results were compared among the groups. Results: The rates of fertilization (62.7, 68.5 and 65.4%, respectively) and cleavage (95.6, 97.6 and 98.0%, respectively) were not different among the groups. And the high quality embryo (HQE) rate also was not different among the groups (61.8, 62.9 and 62.8%, respectively). The pregnancy rate of group C (23.3%) was significantly lower than that of group A (41.2%) and B (48.7%). And the implantation rate was significantly decreased with advance in maternal age (group A; 17.3%, B; 12.6% and C; 6.0%). The G-sac/high quality embryo rate was significantly higher in group A (70.8%) when compared to group B (32.2%) and C (40.0%). On the other hand, the multiple pregnancy rate was significantly lower in group C (14.3%) when compared to group A (71.4%) and B (36.8%). Conclusion: The pregnancy rate was significantly decreased over 35 years. The G-sac/HQE and multiple pregnancy rate were significantly high below 31 years. Thus, these results suggest that the number of high quality embryo transferred should be limited by the age and another criteria for embryo quality evaluation were required for single embryo transfer.

  • PDF

Role of endometrial immune cells in implantation

  • Lee, Ji-Yeong;Lee, Millina;Lee, Sung-Ki
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • Implantation of an embryo occurs during the mid-secretory phase of the menstrual cycle, known as the "implantation window." During this implantation period, there are significant morphologic and functional changes in the endometrium, which is followed by decidualization. Many immune cells, such as dendritic and natural killer (NK) cells, increase in number in this period and early pregnancy. Recent works have revealed that antigen-presenting cells (APCs) and NK cells are involved in vascular remodeling of spiral arteries in the decidua and lack of APCs leads to failure of pregnancy. Paternal and fetal antigens may play a role in the induction of immune tolerance during pregnancy. A balance between effectors (i.e., innate immunity and helper T [Th] 1 and Th17 immunity) and regulators (Th2 cells, regulatory T cells, etc.) is essential for establishment and maintenance of pregnancy. The highly complicated endocrine-immune network works in decidualization of the endometrium and at the fetomaternal interface. We will discuss the role of immune cells in the implantation period and during early pregnancy.