DOI QR코드

DOI QR Code

Role of endometrial immune cells in implantation

  • Lee, Ji-Yeong (Department of Obstetrics and Gynecology, Konyang University Hospital) ;
  • Lee, Millina (Department of Obstetrics and Gynecology, Konyang University Hospital) ;
  • Lee, Sung-Ki (Department of Obstetrics and Gynecology, Konyang University Hospital)
  • Received : 2011.08.19
  • Accepted : 2011.08.30
  • Published : 2011.09.30

Abstract

Implantation of an embryo occurs during the mid-secretory phase of the menstrual cycle, known as the "implantation window." During this implantation period, there are significant morphologic and functional changes in the endometrium, which is followed by decidualization. Many immune cells, such as dendritic and natural killer (NK) cells, increase in number in this period and early pregnancy. Recent works have revealed that antigen-presenting cells (APCs) and NK cells are involved in vascular remodeling of spiral arteries in the decidua and lack of APCs leads to failure of pregnancy. Paternal and fetal antigens may play a role in the induction of immune tolerance during pregnancy. A balance between effectors (i.e., innate immunity and helper T [Th] 1 and Th17 immunity) and regulators (Th2 cells, regulatory T cells, etc.) is essential for establishment and maintenance of pregnancy. The highly complicated endocrine-immune network works in decidualization of the endometrium and at the fetomaternal interface. We will discuss the role of immune cells in the implantation period and during early pregnancy.

Keywords

References

  1. Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, et al. Molecular cues to implantation. Endocr Rev 2004;25:341-73. https://doi.org/10.1210/er.2003-0020
  2. Dekel N, Gnainsky Y, Granot I, Mor G. Inflammation and implantation. Am J Reprod Immunol 2010;63:17-21.
  3. Laird SM, Tuckerman EM, Cork BA, Linjawi S, Blakemore AI, Li TC. A review of immune cells and molecules in women with recurrent miscarriage. Hum Reprod Update 2003;9:163-74. https://doi.org/10.1093/humupd/dmg013
  4. Flynn L, Byrne B, Carton J, Kelehan P, O'Herlihy C, O'Farrelly C. Menstrual cycle dependent fluctuations in NK and T-lymphocyte subsets from non-pregnant human endometrium. Am J Reprod Immunol 2000;43:209-17. https://doi.org/10.1111/j.8755-8920.2000.430405.x
  5. Afshar Y, Stanculescu A, Miele L, Fazleabas AT. The role of chorionic gonadotropin and Notch1 in implantation. J Assist Reprod Genet 2007;24:296-302. https://doi.org/10.1007/s10815-007-9149-2
  6. Clark DA, Chaouat G, Wong K, Gorczynski RM, Kinsky R. Tolerance mechanisms in pregnancy: a reappraisal of the role of class I paternal MHC antigens. Am J Reprod Immunol 2010;63:93-103.
  7. Veenstra van Nieuwenhoven AL, Heineman MJ, Faas MM. The immunology of successful pregnancy. Hum Reprod Update 2003;9:347-57. https://doi.org/10.1093/humupd/dmg026
  8. Coulam CB, Silverfield JC, Kazmar RE, Fathman CG. T-lymphocyte subsets during pregnancy and the menstrual cycle. Am J Reprod Immunol 1983;4:88-90. https://doi.org/10.1111/j.1600-0897.1983.tb00259.x
  9. Yovel G, Shakhar K, Ben-Eliyahu S. The effects of sex, menstrual cycle, and oral contraceptives on the number and activity of natural killer cells. Gynecol Oncol 2001;81:254-62. https://doi.org/10.1006/gyno.2001.6153
  10. Lee S, Kim J, Jang B, Hur S, Jung U, Kil K, et al. Fluctuation of peripheral blood T, B, and NK cells during a menstrual cycle of normal healthy women. J Immunol 2010;185:756-62. https://doi.org/10.4049/jimmunol.0904192
  11. Plaks V, Birnberg T, Berkutzki T, Sela S, BenYashar A, Kalchenko V, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest 2008;118:3954-65.
  12. Pollard JW. Uterine DCs are essential for pregnancy. J Clin Invest 2008;118:3832-5.
  13. Eidukaite A, Tamosiunas V. Endometrial and peritoneal macrophages: expression of activation and adhesion molecules. Am J Reprod Immunol 2004;52:113-7. https://doi.org/10.1111/j.1600-0897.2004.00201.x
  14. Nagamatsu T, Schust DJ. The contribution of macrophages to normal and pathological pregnancies. Am J Reprod Immunol 2010;63:460-71. https://doi.org/10.1111/j.1600-0897.2010.00813.x
  15. Manaster I, Mizrahi S, Goldman-Wohl D, Sela HY, Stern-Ginossar N, Lankry D, et al. Endometrial NK cells are special immature cells that await pregnancy. J Immunol 2008;181:1869-76. https://doi.org/10.4049/jimmunol.181.3.1869
  16. Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci 2011;1221:80-7. https://doi.org/10.1111/j.1749-6632.2010.05938.x
  17. Szekeres-Bartho J, Polgar B. PIBF: the double edged sword. Pregnancy and tumor. Am J Reprod Immunol 2010;64:77-86.
  18. Reichardt P, Dornbach B, Rong S, Beissert S, Gueler F, Loser K, et al. Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse. Blood 2007;110:1519-29. https://doi.org/10.1182/blood-2006-10-053793
  19. Tai P, Wang J, Jin H, Song X, Yan J, Kang Y, et al. Induction of regulatory T cells by physiological level estrogen. J Cell Physiol 2008;214:456-64. https://doi.org/10.1002/jcp.21221
  20. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008;8:523-32. https://doi.org/10.1038/nri2343
  21. Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 2004;112:38-43. https://doi.org/10.1111/j.1365-2567.2004.01869.x
  22. Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod 2004;10:347-53. https://doi.org/10.1093/molehr/gah044
  23. Arruvito L, Sanz M, Banham AH, Fainboim L. Expansion of CD4+ CD25+and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J Immunol 2007;178:2572-8. https://doi.org/10.4049/jimmunol.178.4.2572
  24. Polanczyk MJ, Carson BD, Subramanian S, Afentoulis M, Vandenbark AA, Ziegler SF, et al. Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J Immunol 2004;173:2227-30. https://doi.org/10.4049/jimmunol.173.4.2227
  25. Zhao JX, Zeng YY, Liu Y. Fetal alloantigen is responsible for the expansion of the CD4(+)CD25(+) regulatory T cell pool during pregnancy. J Reprod Immunol 2007;75:71-81. https://doi.org/10.1016/j.jri.2007.06.052
  26. Zenclussen ML, Thuere C, Ahmad N, Wafula PO, Fest S, Teles A, et al. The persistence of paternal antigens in the maternal body is involved in regulatory T-cell expansion and fetal-maternal tolerance in murine pregnancy. Am J Reprod Immunol 2010;63:200-8. https://doi.org/10.1111/j.1600-0897.2009.00793.x
  27. Robertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlstrom AC, Care AS. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod 2009;80:1036-45. https://doi.org/10.1095/biolreprod.108.074658
  28. Leber A, Teles A, Zenclussen AC. Regulatory T cells and their role in pregnancy. Am J Reprod Immunol 2010;63:445-59. https://doi.org/10.1111/j.1600-0897.2010.00821.x
  29. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005;6:1123-32. https://doi.org/10.1038/ni1254
  30. Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 2007;13:139-45. https://doi.org/10.1038/nm1551
  31. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 2004;21:467-76. https://doi.org/10.1016/j.immuni.2004.08.018
  32. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006;126:1121-33. https://doi.org/10.1016/j.cell.2006.07.035
  33. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007;26:371-81. https://doi.org/10.1016/j.immuni.2007.02.009
  34. O'Garra A, Stockinger B, Veldhoen M. Differentiation of human T(H)-17 cells does require TGF-beta! Nat Immunol 2008;9:588-90.
  35. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008;454:350-2. https://doi.org/10.1038/nature07021
  36. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 2008;9:641-9. https://doi.org/10.1038/ni.1610
  37. Wang WJ, Hao CF, Yi L, Yin GJ, Bao SH, Qiu LH, et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol 2010;84:164-70. https://doi.org/10.1016/j.jri.2009.12.003
  38. Liu YS, Wu L, Tong XH, Wu LM, He GP, Zhou GX, et al. Study on the relationship between th17 cells and unexplained recurrent spontaneous abortion. Am J Reprod Immunol 2011;65:503-11. https://doi.org/10.1111/j.1600-0897.2010.00921.x
  39. King A, Balendran N, Wooding P, Carter NP, Loke YW. CD3-leukocytes present in the human uterus during early placentation: phenotypic and morphologic characterization of the CD56++ population. Dev Immunol 1991;1:169-90. https://doi.org/10.1155/1991/83493
  40. Manaster I, Mandelboim O. The unique properties of uterine NK cells. Am J Reprod Immunol 2010;63:434-44. https://doi.org/10.1111/j.1600-0897.2009.00794.x
  41. Manaster I, Mandelboim O. The unique properties of human NK cells in the uterine mucosa. Placenta 2008;29 Suppl A:S60-6. https://doi.org/10.1016/j.placenta.2007.10.006
  42. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006;12:1065-74. https://doi.org/10.1038/nm1452
  43. Kitaya K, Yamaguchi T, Yasuo T, Okubo T, Honjo H. Post-ovulatory rise of endometrial CD16(-) natural killer cells: in situ proliferation of residual cells or selective recruitment from circulating peripheral blood? J Reprod Immunol 2007;76:45-53. https://doi.org/10.1016/j.jri.2007.03.010

Cited by

  1. Immunology of Normal and Abnormal Menstruation vol.9, pp.4, 2013, https://doi.org/10.2217/whe.13.32
  2. High circulating CD3+CD56+CD16+ natural killer-like T cell levels predict a better IVF treatment outcome vol.97, pp.2, 2013, https://doi.org/10.1016/j.jri.2012.12.006
  3. L’implantation embryonnaire : Importance de la famille de l’interleukine 1 vol.30, pp.6, 2014, https://doi.org/10.1051/medsci/20143006014
  4. Menstrual blood closely resembles the uterine immune micro-environment and is clearly distinct from peripheral blood vol.29, pp.2, 2014, https://doi.org/10.1093/humrep/det398
  5. Adoptive transfer of pregnancy-induced CD4+CD25+ regulatory T cells reverses the increase in abortion rate caused by interleukin 17 in the CBA/J×BALB/c mouse model vol.29, pp.5, 2011, https://doi.org/10.1093/humrep/deu014
  6. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts vol.29, pp.6, 2014, https://doi.org/10.1093/humrep/deu047
  7. Of mice and (wo)men: factors influencing successful implantation including endocannabinoids vol.20, pp.3, 2011, https://doi.org/10.1093/humupd/dmt060
  8. Endocannabinoids as biomarkers of human reproduction vol.20, pp.4, 2011, https://doi.org/10.1093/humupd/dmu004
  9. Intravenous Immunoglobulin G Modulates Peripheral Blood Th17 and Foxp3+ Regulatory T Cells in Pregnant Women with Recurrent Pregnancy Loss vol.71, pp.5, 2011, https://doi.org/10.1111/aji.12208
  10. Relationship between Maternal Immunological Response during Pregnancy and Onset of Preeclampsia vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/210241
  11. Role of the innate immunity in female reproductive tract vol.3, pp.None, 2011, https://doi.org/10.4103/2277-9175.124626
  12. Leukemia Inhibitory Factor: Roles in Embryo Implantation and in Nonhormonal Contraception vol.2014, pp.None, 2011, https://doi.org/10.1155/2014/201514
  13. Diverse Roles of Prostaglandins in Blastocyst Implantation vol.2014, pp.None, 2011, https://doi.org/10.1155/2014/968141
  14. What is the impact of Th1/Th2 ratio, SOCS3, IL17, and IL35 levels in unexplained infertility? vol.103, pp.None, 2014, https://doi.org/10.1016/j.jri.2013.11.002
  15. Immune Cells in the Female Reproductive Tract vol.15, pp.1, 2011, https://doi.org/10.4110/in.2015.15.1.16
  16. Epithelial and stromal-specific immune pathway activation in the murine endometrium post-coitum vol.150, pp.2, 2015, https://doi.org/10.1530/rep-15-0087
  17. Resident Macrophages and Lymphocytes in the Canine Endometrium vol.50, pp.5, 2011, https://doi.org/10.1111/rda.12567
  18. Menstrual blood contains immune cells with inflammatory and anti‐inflammatory properties vol.41, pp.11, 2011, https://doi.org/10.1111/jog.12801
  19. Low-Dose Aspirin and Uterine Natural Killer Cells in Mice at Day Seven of Pregnancy vol.6, pp.6, 2011, https://doi.org/10.17795/jjhr-27858
  20. Seminal plasma induces inflammation in the uterus through the γδ T/IL-17 pathway vol.6, pp.None, 2011, https://doi.org/10.1038/srep25118
  21. CD33+/HLA‐DRneg and CD33+/HLA‐DR+/− Cells: Rare Populations in the Human Decidua with Characteristics of MDSC vol.75, pp.5, 2011, https://doi.org/10.1111/aji.12492
  22. IL‐7/IL‐7R signaling pathway might play a role in recurrent pregnancy losses by increasing inflammatory Th17 cells and decreasing Treg cells vol.76, pp.6, 2011, https://doi.org/10.1111/aji.12588
  23. Deferred Frozen Embryo Transfer: What Benefits can be Expected from this Strategy in Patients with and without Endometriosis? vol.9, pp.2, 2017, https://doi.org/10.5301/jeppd.5000281
  24. Endometrial Stromal and Epithelial Cells Exhibit Unique Aberrant Molecular Defects in Patients With Endometriosis vol.25, pp.1, 2011, https://doi.org/10.1177/1933719117704905
  25. Effects of Bisphenol A and 4- tert -Octylphenol on Embryo Implantation Failure in Mouse vol.15, pp.8, 2011, https://doi.org/10.3390/ijerph15081614
  26. Maternal obesity alters uterine NK activity through a functional KIR2DL1/S1 imbalance vol.96, pp.8, 2011, https://doi.org/10.1111/imcb.12041
  27. Is It Time to Move Toward Freeze-All Strategy? – A Retrospective Study Comparing Live Birth Rates between Fresh and First Frozen Blastocyst Transfer vol.12, pp.4, 2011, https://doi.org/10.4103/jhrs.jhrs_146_18
  28. Cross talk between natural killer cells and mast cells in tumor angiogenesis vol.68, pp.1, 2011, https://doi.org/10.1007/s00011-018-1181-4
  29. The endometrial immune environment of women with endometriosis vol.25, pp.5, 2011, https://doi.org/10.1093/humupd/dmz018
  30. Role of Macrophages in Pregnancy and Related Complications vol.67, pp.5, 2011, https://doi.org/10.1007/s00005-019-00552-7
  31. Endometrial Immune Dysfunction in Recurrent Pregnancy Loss vol.20, pp.21, 2011, https://doi.org/10.3390/ijms20215332
  32. Trophoblasts promote induction of a regulatory phenotype in B cells that can protect against detrimental T cell–mediated inflammation vol.82, pp.6, 2011, https://doi.org/10.1111/aji.13187
  33. Immune cell infiltrate at the utero-placental interface is altered in placenta accreta spectrum disorders vol.301, pp.2, 2011, https://doi.org/10.1007/s00404-020-05453-1
  34. Role of intrauterine administration of transfected peripheral blood mononuclear cells by GM-CSF on embryo implantation and pregnancy rate in mice vol.26, pp.2, 2020, https://doi.org/10.1093/molehr/gaz068
  35. The impact of disturbances in natural conception cycles vol.301, pp.4, 2011, https://doi.org/10.1007/s00404-020-05464-y
  36. Superovulation with human chorionic gonadotropin (hCG) trigger and gonadotropin releasing hormone agonist (GnRHa) trigger differentially alter essential angiogenic factors in the endometrium in a mous vol.102, pp.5, 2011, https://doi.org/10.1093/biolre/ioaa014
  37. Impaired inflammatory state of the endometrium: a multifaceted approach to endometrial inflammation. Current insights and future directions vol.19, pp.2, 2011, https://doi.org/10.5114/pm.2020.97863
  38. Ist es schwieriger geworden, schwanger zu werden? vol.25, pp.suppl1, 2011, https://doi.org/10.1007/s15013-020-3087-9
  39. The Endometrial Immune Profiling May Positively Affect the Management of Recurrent Pregnancy Loss vol.12, pp.None, 2011, https://doi.org/10.3389/fimmu.2021.656701
  40. Effects of Endocrine-Disrupting Chemicals on Endometrial Receptivity and Embryo Implantation: A Systematic Review of 34 Mouse Model Studies vol.18, pp.13, 2011, https://doi.org/10.3390/ijerph18136840
  41. Maternal Neutrophil Depletion Fails to Avert Systemic Lipopolysaccharide-Induced Early Pregnancy Defects in Mice vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22157932
  42. The decidual expression of Interleukin‐7 is upregulated in early pregnancy loss vol.86, pp.3, 2011, https://doi.org/10.1111/aji.13437
  43. Uterine natural killer cell biology and role in early pregnancy establishment and outcomes vol.2, pp.4, 2011, https://doi.org/10.1016/j.xfnr.2021.06.002
  44. Recurrent Implantation Failure-Is It the Egg or the Chicken? vol.12, pp.1, 2011, https://doi.org/10.3390/life12010039