• Title/Summary/Keyword: Embryo culture

Search Result 944, Processing Time 0.027 seconds

The Effects of Vero Cell Co-culture on Mouse Embryo Development (Vero Cell과의 공동배양이 체외에서 생쥐 배아발생에 미치는 영향)

  • Lee, Yoon;Park, June-Hong;Kang, He-Na;Kim, Yong-Bong;Lee, Eung-Soo;Park, Sung-Kwan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.2
    • /
    • pp.233-239
    • /
    • 1997
  • Embryos of most mammalian species grown in vitro would undergo developmental arrest at the approximate time of genomic activation. Stage-specific cell block and the resulting rapid loss of embryo viability in conventional culture media have limited the duration for which embryos may be cultured prior to transfer. As a result, embryos are usually transferred to the uterus at the 4-to 8-cell stage to avoid the loss of viability associated with long-term in vitro culture. Early transfer has led to asynchrony of the endometrium-trophectoderm interaction at the time of implantation and a resultant reduction in the rate of implantation. To overcome these problems, a variety of co-culture systems has been devised in which embryos can develop for a longer period prior to embryo transfer. Vero cells, derived from African green monkey kidney, share a common embryologic origin with cells from the genital tract. In addition, they are potentially safe to use, since they are highly controlled for viruses and other contaminants. Therefore, co-culture using Vero cells has been widely utilized to enhance embryo viability and development, although not without controversies. We thus designed a series of experiments to demonstrate whether Vero cells do indeed enhance mouse embryo development as well as to compare the efficacy of co-culturing mouse 1-cell embryos on Vero cell monolayer in both Ham's F-10 and human tubal fluid (HTF) culture media. 1-cell stage ICR mouse embryos were cultured either in the presence of Vero cells (Group A) or in conventional culture medium alone (Group B). In Ham's F-10 significantly more 3-to-8cell embryos developed in group A than group B (59.8 versus 10.0%; p<0.01). In contrast, there was no significant difference in embryonic development both group A and group B in HTF. However, significant differences were noted only in later embryonic stage (13 and 0%; p<0.05 of group A and B respectively, hatching or hatched). In Ham's F-10, we also could observe the beneficial effect of Vero cell on hatching process (70.7 and 42.1%; p<0.05 of group A and group B respectively).

  • PDF

The impact of post-warming culture duration on clinical outcomes of vitrified-warmed single blastocyst transfer cycles

  • Hwang, Ji Young;Park, Jae Kyun;Kim, Tae Hyung;Eum, Jin Hee;Song, Haengseok;Kim, Jin Young;Park, Han Moie;Park, Chan Woo;Lee, Woo Sik;Lyu, Sang Woo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.4
    • /
    • pp.312-318
    • /
    • 2020
  • Objective: The objective of the study was to compare the effects of long-term and short-term embryo culture to assess whether there is a correlation between culture duration and clinical outcomes. Methods: Embryos were divided into two study groups depending on whether their post-warming culture period was long-term (20-24 hours) or short-term (2-4 hours). Embryo morphology was analyzed with a time-lapse monitoring device to estimate the appropriate timing and parameters for evaluating embryos with high implantation potency in both groups. Propensity score matching was performed to adjust the confounding factors across groups. The grades of embryos and blastocoels, morphokinetic parameters, implantation rate, and ongoing pregnancy rate were compared. Results: No significant differences were observed in the implantation rate or ongoing pregnancy rate between the two groups (long-term culture group vs. short-term culture group: 56.3% vs. 67.9%, p=0.182; 47.3% vs. 53.6%, p=0.513). After warming, there were more expanded and hatching/hatched blastocysts in the long-term culture group than in the short-term culture group, but there was no significant between-group difference in embryo grade. Regarding pregnancy outcomes, the time to complete blastocyst re-expansion after warming is shorter in women who became pregnant than in those who did not in both culture groups (long-term: 2.19±0.63 vs. 4.11±0.81 hours, p=0.003; short-term: 1.17±0.29 vs. 1.94±0.76 hours, p=0.018, respectively). Conclusion: The outcomes of short-term culture and long-term culture were not significantly different in vitrified-warmed blastocyst transfer. Regardless of the post-warming culture time, the degree of blastocyst re-expansion 3-4 hours after warming is an important marker for embryo selection.

Cryopreservation of Zone Pellucida Removed Embryo and Normal Embryo of the Mouse Early Embryos (생쥐 초기배의 정상배와 투명대제법 라화배의 동결보존)

  • 윤창현;강대진;민관식;장규태;오석두
    • Korean Journal of Animal Reproduction
    • /
    • v.15 no.2
    • /
    • pp.97-101
    • /
    • 1991
  • This study was carried out to investigate the survival rate of in vitro culture after frozenthawed, to used DMSO(dimethyl sulfoxide), glycerol and ethylene glycol of cryorpotective agents at the zona pellucida removed and intact on the morulae and blastocysts. The results obtained from this study were as follows : 1. The survival rate of in vitro culture after frozen-thawed to used cryoprotective agents of three kinds at the morulae was 86.0%, 87.1% and 83.3%, total or mean were 85.5%, respectively. 2. The survival rate of in vitro culture after frozen-thawed to used cryoprotective agents of three kinds at the zona pellucida removed morulae was 53.2%, 42.3% and 37.5%, total or mean were 44.3%, respectively. 3. The survival rate of in vitro cultrue after frozen-thawed to used cryoprotective agents of three kinds at the blastocysts was 89.4%, 86.2%, total or mean were 86.7%, respectively. 4. The survival rate of in vitro culture after frozen-thawed to used cryoprotective agents of three kinds at the zona pellucida removed blastocysts was 55.8%, 51.6% and 40.6%, total or mean were 49.3%, respectively.

  • PDF

Effects of Co-Culture with Granulosa Cells on In Vitro Fertilization and Cleavage of Bovine Extrafollicular Oocytes (과립막세포와의 Co-Culture가 소 난포란의 체외수정과 분할에 미치는 영향)

  • 신태영;조충호;황광남;황우석
    • Journal of Embryo Transfer
    • /
    • v.6 no.1
    • /
    • pp.25-32
    • /
    • 1991
  • The present study was performed to investigate the effects of co-culture with granulosa cells on in vitro fertilization and cleavage of early bovine embryo development. Bovine oocytes were matured for 20-24 hrs in vitro with granulosa cells or without and then fertilized in vitro using frozen-thawed spermatozoa treated with BO-caffeine, BO-BSA(2OmM heparin added). At l8hrs after insemination, oocytes were fixed and examined or further cultured in TCM 199 for 48hrs. The fertilization rates between the control(70.4%) and the groups of co-cultured with granulosa cell(2.5$\times$106 cells/ml; 71.6%, 5.0$\times$ 106/ml; 71.9%, l.0$\times$ 107/ml; 71.1%) did not differ significantly. The cleavage rates in the groups co-cultured with granulosa cell(2.5$\times$ 106 cells/mi; 43.6%, 5.0$\times$ 106/ml; 46.8%. l.0$\times$ 107/ml; 45.0%)were significantly higher than that of without granulosa cell, respectively(P<0.05). However there were no significant differences between the groups co-cultured with granulosa cells. The result indicated that co-culture with granulosa cell was effective means to cleavage of bovine follicular oocytes but did not affect the in vitro fertilization.

  • PDF

Effect of Co-culture with Porcine Endometrial Cell Monolayers on the Development of In Vitro Produced Porcine Zygotes (자궁내막세포막의 공배양이 돼지 체외수정란의 초기발달에 미치는 영향)

  • 한만희;박병권;박창식;이규승
    • Journal of Embryo Transfer
    • /
    • v.11 no.3
    • /
    • pp.217-223
    • /
    • 1996
  • This study was conducted to investigate the effects of co-culture for the development rate to morula /blastocyst stages of early porcine embryos, derived from oocytes matured and fertilized in vitro, with porcine endometrial cell monolayers(PEM) in the two different media, respectively. The rates of embryos developed to 2-, 4-, 8~16-cell and morula /blastocyst stage were 49.6, 40.5, 28.2 and 15.3% in Ham's F-10 with PEM, and 55.3, 45.9, 32.7, and 17.6% in TCM-HEPES with PEM, respectively. The above development rates to morula /blastocyst stages were significantly higher than those of the embryos cultured in the Ham's F-10 and TGM-HEPES without PEM(P<0.05). The in vitro development rates to the morula /blastocyst stage of 1-cell embryos cultured in Ham's F-10 and TCM-HEPES without PEM were 0~1.2%. Especially, most of embryos were observed to arrest the development beyond 4-cell stages. As shown in the above results, the co-culture of in vitro produced porcine embryos with PEM in the two different media enhanced the development of fertilized eggs to morula /blastocyst stages in vitro. However, we didn't find out any differences for the in vitro development to morula /blastocyst stages between Ham's F-10 and TcM-HEPES media.

  • PDF

Plant Regeneration from Embryogenic Suspension Culture of Orchardgrass (Dactylis glomerata L.) (오차드그래스의 현탁배양으로부터 부정배 형성과 식물체 재분화)

  • 이효신;권용삼;이병현;원성혜;김기용;조진기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • This study was carried out to improve the ability of embryo formation and the efficiency of plant regeneration from suspension cultured cells of seed derived calli of orchardgrass (Dactylis glomerata L.). The frequency of formation of round cell and cell colonies was highest at 50 days after suspension culture in $N_6$ medium supplemented with $4\;g/{\ell}$ casein hydrolysate (CH), $20\;g/{\ell}$ sucrose and $30\;g/{\ell}$ sorbitol. The highest frequency of plant regeneration and somatic embryo formation was obtained from suspension cultured cells of 60 days. Addition of CH ($4\;g/{\ell}$) in suspension culture medium gave the highest frequency of embryo formation (39.6%) and plant regeneration (73.0%).

  • PDF

Selection of Ginseng Superior Lines Tolerant to Salt Stress Through Zygotic Embryo Culture (배배양에 의한 인삼우수계통으로부터 염류 Stress 내성 계통의 선발)

  • 양덕춘;윤영상;김무성
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.257-264
    • /
    • 2004
  • Selection of stress-tolerant ginseng lines in fields is very difficult because it is almost impossible to control properly the environmental conditions of soil. On the contrary, it can be studied with ease to search for stress-tolerant ginseng lines through in vitro culture because of easy manipulation of stress conditions. This study was conducted for the selection of ginseng pure lines tolerant to salt stress. Murashige &amp; Skoog(MS) media with 2.5 folds of KNO$_3$, NH$_4$NO$_3$, MgSO$_4$.7$H_2O$, KH$_2$PO$_4$, and CaC1$_2$.2$H_2O$ was established for the selection of ginseng pure lines tolerant to salt stress in vitro. Among 88 ginseng pure lines bred by Korea Ginseng and Tobacco Research Institute, Punggi Hwangsuk, 78093, 82886, 78135, 86024 and KG104 lines was tolerant to salt stress. For the stable production of quality Korean ginseng, genetic tolerance to salt stress is one of important factors since relatively high salt concentrations in the ginseng nursery soil environment of Korea. Ginseng inbred pure lines were tested for their tolerance to salt stress through in vitro culture technique.

Somatic Embryogenesis - Apical Meristems and Embryo Conversion

  • Yeung, Edward C.;Stasolla, Claudio
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.299-307
    • /
    • 2000
  • A large amount of information is currently available for somatic embryogenesis of plants. However, one common problem related to somatic embryos is that the conversion rate can be low for some species. Apical meristems are responsible for post-embryonic growth of the embryo. The low percentage observed is most likely a result of poor apical meristem development or defects in the meristem organization during somatic embryogenesis. In flowering plants, apical meristems are well developed by the late heart stage of zygotic embryo development. In conifers, such as white spruce, apical meristems are formed at the pre-cotyledon stage. Thus, apical meristem development occurs very early, prior to the maturation stage of embryo development. Once formed, meristems are stably determined. In the somatic embryo, as exemplified by white spruce, since embryo development is not synchronous, tissue differentiation including apical meristem formation occurs throughout the“maturation”stage. Different apical meristem organizations can be found among different individuals within a population. In contrast to their zygotic counterparts, the apical meristems appear not to be stably determined as their organization, as the shoot apical meristem especially, can be easily modified or disrupted. Precocious germination seldom results in functional plantlets. All these observations suggest that the conditions for somatic embryo maturation have not been optimized or are not suitable for meristem formation and development. The following strategies could improve meristem development and hence conversion: 1. Simulate in ouuio conditions to promote meristem development prior to the“maturation”treatment.2. Prevent deterioration of apical meristem organization during somatic embryo maturation.3. Promote further meristem development during embryo germination.

  • PDF

Organ Culture of Ovary Isolated from Juvenile Mice (약령 마우스에서 분리한 난소의 기관배양에 관한 연구)

  • 이현주;김지철;김기동;이상호;송해범
    • Journal of Embryo Transfer
    • /
    • v.17 no.3
    • /
    • pp.195-201
    • /
    • 2002
  • This study was to assess the developmental capacity of oocytes matured in vitro after 20, 15, 10, 5 and 0 days of organ culture when ovaries were isolated from juvenile mice at 0-, 5-, 10-,15- and 20-day old, respectively, and to develop in vitro culture system that observed a view to morphology of ovaries and nucleus maturation of oocytes. The size of ovaries decreased 35.9%, 8.7%, 1.2% and 14.4% after 20, 15, 10, 5 days of organ culture when the ovaries were isolated from 0-, 5-, 10 and 15-day old mice, respectively. After organ culture, the recovery rates, diameters of oocytes and the number of oocytes progressed from GV to MII were increased as increasing age of mice.