• Title/Summary/Keyword: Embedded microprocessor

Search Result 115, Processing Time 0.026 seconds

A Study on Extendable Instruction Set Computer 32 bit Microprocessor (확장 명령어 32비트 마이크로 프로세서에 관한 연구)

  • 조건영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.11-20
    • /
    • 1999
  • The data transfer width between the mocroprocessor and the memory comes to a critical part that limits system performance since the data transfer width has been as it was while the performance of a microprocessor is getting higher due to its continuous development in speed. And it is important that the memory should be in small size for the reduction of embedded microprocessor's price which is integrated on a single chip with the memory and IO circuit. In this paper, a mocroprocessor tentatively named as Extendable Instruction Set Computer(EISC) is proposed as the high code density 32 bit mocroprocessor architecture. The 32 bit EISC has 16 general purpose registers and 16 bit fixed length instruction which has the short length offset and small immediate operand. By using and extend register and extend flag, the offset and immediate operand could be extended. The proposed 32 bit EISC is implemented with an FPGA and all of its functions have been tested and verified at 1.8432MHz. And the cross assembler, the cross C/C++ compiler and the instruction simulator of the 32 bit EISC shows 140-220% and 120-140% higher code density than RISC and CISC respectively, which is much higher than any other traditional architectures. As a consequence, the EISC is suitable for the next generation computer architecture since it requires less data transfer width compared to any other ones. And its lower memory requirement will embedded microprocessor more useful.

  • PDF

A Study On the Tracking Antenna System for a Moving Vehicle by the Embedded Linux (임베디드 리눅스를 이용한 이동체 추적 안테나 시스템에 관한 연구)

  • Kim, Jong-Kwon;Woo, Gui-Aee;Cho, Kyeum-Rae;Lee, Dae-Woo;Jang, Chul-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.49-57
    • /
    • 2004
  • In This paper the embedded linux based embedded control system was used and the tracking antenna system was studied for data link and communication between moving vehicles. A microprocessor based embedded controller is equipped with SA-1110 board and this embedded controller can control the azimuth and the elevation angle of the antenna. The relative position and attitude for pointing are calculated by using the GPS position signals from the moving vehicle. To verify the performance of the designed embedded antenna system, the orbit information of the Arirang satellite(from KARI) is used.

  • PDF

A Non-Cacheable Address Designating Scheme in MMU-less Embedded Microprocessor Systems

  • Lim, Yong-Seok;Suh, Woon-Sik;Kim, Suki
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.235-238
    • /
    • 2002
  • This paper proposes a novel scheme of designating non-cacheable addresses of memories in embedded systems of multi-master architectures without a Memory Management Unit (MMU). As a solution for data coherency problem between external memories and a cache memory, we proposes a cache masking scheme by allocating the most significant bit of address not used in 32-bit address system as indicator bit to designate non-cacheable address. As this scheme enables non-cacheable area designation every address, the simpler in the aspect of hardware and more flexible size of non-cacheable area can be obtained.

  • PDF

Design of SIMD-DSP/PPU for a High-Performance Embedded Microprocessor (고성능 내장형 마이크로프로세서를 위한 SIMD-DSP/FPU의 설계)

  • 정우경;홍인표;이용주;이용석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4C
    • /
    • pp.388-397
    • /
    • 2002
  • We designed a SIMD-DSP/FPU that can efficiently improve multimedia processing performance when integrated into high-performance embedded microprocessors. We proposed partitioned architectures and new schemes for several functional units to reduce chip area. Sharing functional units reduces the area of FPU significantly. The proposed architecture is modeled in HDL and synthesized with a 0.35$\mu\textrm{m}$ standard cell library. The chip area is estimated to be about 100,000 equivalent gates. The designed unit can run at higher than 50MHz clock frequency of CPU core under the worst-case operating conditions.

Development of Embedded Network Processor (임베디드 네트웍용 프로세서 개발)

  • 유문종;최종운
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.560-563
    • /
    • 2001
  • We made a HTTP server using 8 bit microprocessor. It was TMP84C015 which applied a 180 core and RTL8019AS was installed for an ethernet physical layer. Assembly language was used to optimize a performance of the MPU, to overcome an restriction of memory size and to maximize the throughput of packet using TCP, UDP, IP, ICMP and ARP protocol. We used LabVIEW to verified the each protocol on the client side.

  • PDF

On the Design of an Efficient Mobile Robot Framework by Using Collaborative Sensor Fusion (다양한 센서 융합을 통한 효율적인 모바일로봇 프레임워크 설계)

  • Kim, Dong-Hwan;Jo, Sung-Hyun;Yang, Yeon-Mo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.124-131
    • /
    • 2011
  • There are many researches in unmanned vehicles such as UGV(Unmanned Ground Vehicle), AUV(Autonomous Underwater Vehicle). In these researches, differential wheeled mobile robots are mainly used to develop the experimental stage algorithm because of the simplicity of modeling and control. Usually a commercial product used in the study, but in order to operate a commercial product to the restrictions because there would need to use a fixed protocol. Using the microprocessor makes the internal sensors(encoder and INS) and external sensors(ultrasonic sensors, infrared sensors) operate and to determine commands for robot operation. This paper propose a mobile robot design for suitable purpose.

Face-Mask Detection with Micro processor (마이크로프로세서 기반의 얼굴 마스크 감지)

  • Lim, Hyunkeun;Ryoo, Sooyoung;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.490-493
    • /
    • 2021
  • This paper proposes an embedded system that detects mask and face recognition based on a microprocessor instead of Nvidia Jetson Board what is popular development kit. We use a class of efficient models called Mobilenets for mobile and embedded vision applications. MobileNets are based on a streamlined architechture that uses depthwise separable convolutions to build light weight deep neural networks. The device used a Maix development board with CNN hardware acceleration function, and the training model used MobileNet_V2 based SSD(Single Shot Multibox Detector) optimized for mobile devices. To make training model, 7553 face data from Kaggle are used. As a result of test dataset, the AUC (Area Under The Curve) value is as high as 0.98.

Implementation of Music Embedded System Software Using Real Time Software Analysis and Design Method (실시간 소프트웨어 분석 및 설계 기법을 이용한 뮤직 임베디드시스템 소프트웨어의 구현)

  • Choi, Seong-Min;Oh, Hoon
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.213-222
    • /
    • 2008
  • The existing approaches for the music application have not considered a real-time multi-tasking model. So, it suffers from a high complexity and a low flexibility in design as well as lack of predictability for the timely execution of critical tasks. In this paper, we design a new concurrent tasking architecture for a real-time embedded music system and examine if all real-time tasks can finish execution within their respective time constraints. The design is implemented on the Linux based Xhyper272 Board that uses the Intel Bulverde microprocessor.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

A Study on an Error Correction Code Circuit for a Level-2 Cache of an Embedded Processor (임베디드 프로세서의 L2 캐쉬를 위한 오류 정정 회로에 관한 연구)

  • Kim, Pan-Ki;Jun, Ho-Yoon;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Microprocessors, which need correct arithmetic operations, have been the subject of in-depth research in relation to soft errors. Of the existing microprocessor devices, the memory cell is the most vulnerable to soft errors. Moreover, when soft errors emerge in a memory cell, the processes and operations are greatly affected because the memory cell contains important information and instructions about the entire process or operation. Users do not realize that if soft errors go undetected, arithmetic operations and processes will have unexpected outcomes. In the field of architectural design, the tool that is commonly used to detect and correct soft errors is the error check and correction code. The Itanium, IBM PowerPC G5 microprocessors contain Hamming and Rasio codes in their level-2 cache. This research, however, focuses on huge server devices and does not consider power consumption. As the operating and threshold voltage is currently shrinking with the emergence of high-density and low-power embedded microprocessors, there is an urgent need to develop ECC (error check correction) circuits. In this study, the in-output data of the level-2 cache were analyzed using SimpleScalar-ARM, and a 32-bit H-matrix for the level-2 cache of an embedded microprocessor is proposed. From the point of view of power consumption, the proposed H-matrix can be implemented using a schematic editor of Cadence. Therefore, it is comparable to the modified Hamming code, which uses H-spice. The MiBench program and TSMC 0.18 um were used in this study for verification purposes.