• Title/Summary/Keyword: Embedded learning

Search Result 420, Processing Time 0.025 seconds

Implementation of CoMirror System with Video Call and Messaging Function between Smart Mirrors (스마트 미러간 화상 통화와 메시징 기능을 가진 CoMirror 시스템 구현)

  • Hwang, Kitae;Kim, Kyung-Mi;Kim, Yu-Jin;Park, Chae-Won;Yoo, Song-Yeon;Jung, Inhwan;Lee, Jae-Moon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.121-127
    • /
    • 2022
  • Smart mirror is an IoT device that attaches a display and an embedded computer to the mirror and provides various information to the useer along with the mirror function. This paper went beyond the form of dealing with smart mirrors only stand alone device the provide information to users, and constructed a network in which smart mirrors are connected, and proposed and implemented a CoMirror system that allows users to talk and share information with other smart mirror users. The CoMirror system has a structure in which several CoMirror clients are connected on one CoMirror server. The CoMirror client consists of Raspberry Pi, a mirror film, a touch pad, a display device, an web camera, etc. The server has functions such as face learning and recognition, user management, a relay role for exchanging messages between clients, and setting up for video call. Users can communicate with other CoMirror users via the server, such as text, image, and audio messages, as well as 1:1 video call.

An Analysis of the Teacher Librarian's Duties and Competencies Embedded in the IB International School Job Advertisement (IB 국제학교 구인광고에 담긴 사서교사의 직무 및 역량 분석)

  • Eun-Hae, Kim;Gi-Ho, Song
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.4
    • /
    • pp.5-25
    • /
    • 2022
  • The purpose of this study is to analyze the duties and competencies of the teacher librarian required by schools as consumers to operate the curriculum, and to suggest ways to improve their professionality. To this end, the duties and competencies included in 20 job advertisements posted by IB schools to select teacher librarians were analyzed based on the IFLA School Library Guidelines. As a result of the analysis, it was found that the duties and competencies of IB schools are based on the IB curriculum guidelines and this guideline is based on the educational philosophy and learner image that IBO curriculum aims. And the job that schools want the most from the teacher librarian is teaching through library collection management and collaboration, and the main competencies for this are communication and collaboration skills, teaching-learning·curriculum·education design and operation, and digital & media literacy. The results of this analysis show that the professionalism should be based on the vision for the educated person and learner capabilities presented in the curriculum. Based on this results, in this study the ways for developing teacher librarians' professionalism were presented in the following aspects. First, including the educational responsibilities of the school library in the Arrangement and Implementation Guideline of National Level Curriculum. Second, Classifying human resources' duties through revision of the Enforcement Decree of the School Library Promotion Act. Third, reorganizing of basic courses to acquire teacher librarian qualifications and introducing a demonstration of collaborative teaching in the eduactional practice and the certification examination.

Performance Evaluation of CoMirror System with Video Call and Messaging Function between Smart Mirrors (스마트 미러간 화상 통화와 메시징 기능을 가진 CoMirror 시스템의 성능평가)

  • Kitae Hwang;Kyung-Mi Kim;Yu-Jin Kim;Chae-Won Park;Song-Yeon Yoo;In-Hwan Jung;Jae-Moon Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.51-57
    • /
    • 2023
  • Smart mirror is an IoT device that attaches a display and an embedded computer to the mirror and provides various information to the user along with the mirror function. This paper presents performance evaluation of the CoMirror system as an extension of the previous research in which proposed and implemented the CoMirror system that connects Smart Mirrors using a network. First, the login performance utilizing face recognition was evaluated. As result of the performance evaluation, it was concluded that the 40 face images are most suitable for face learning and only one face image is most suitable for face recognition for login. Second, as a result of evaluating the message transmission time, the average time was 0.5 seconds for text, 0.63 seconds for audio, and 2.9 seconds for images. Third, as a result of measuring a video communication performance, the average setup time for video communication was 1.8 seconds and the average video reception time was 1.9 seconds. Finally, according to the performance evaluation results, we conclude that the CoMirror system has high practicality.

The Prediction of the Helpfulness of Online Review Based on Review Content Using an Explainable Graph Neural Network (설명가능한 그래프 신경망을 활용한 리뷰 콘텐츠 기반의 유용성 예측모형)

  • Eunmi Kim;Yao Ziyan;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.309-323
    • /
    • 2023
  • As the role of online reviews has become increasingly crucial, numerous studies have been conducted to utilize helpful reviews. Helpful reviews, perceived by customers, have been verified in various research studies to be influenced by factors such as ratings, review length, review content, and so on. The determination of a review's helpfulness is generally based on the number of 'helpful' votes from consumers, with more 'helpful' votes considered to have a more significant impact on consumers' purchasing decisions. However, recently written reviews that have not been exposed to many customers may have relatively few 'helpful' votes and may lack 'helpful' votes altogether due to a lack of participation. Therefore, rather than relying on the number of 'helpful' votes to assess the helpfulness of reviews, we aim to classify them based on review content. In addition, the text of the review emerges as the most influential factor in review helpfulness. This study employs text mining techniques, including topic modeling and sentiment analysis, to analyze the diverse impacts of content and emotions embedded in the review text. In this study, we propose a review helpfulness prediction model based on review content, utilizing movie reviews from IMDb, a global movie information site. We construct a review helpfulness prediction model by using an explainable Graph Neural Network (GNN), while addressing the interpretability limitations of the machine learning model. The explainable graph neural network is expected to provide more reliable information about helpful or non-helpful reviews as it can identify connections between reviews.

The Optimization of Ensembles for Bankruptcy Prediction (기업부도 예측 앙상블 모형의 최적화)

  • Myoung Jong Kim;Woo Seob Yun
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.39-57
    • /
    • 2022
  • This paper proposes the GMOPTBoost algorithm to improve the performance of the AdaBoost algorithm for bankruptcy prediction in which class imbalance problem is inherent. AdaBoost algorithm has the advantage of providing a robust learning opportunity for misclassified samples. However, there is a limitation in addressing class imbalance problem because the concept of arithmetic mean accuracy is embedded in AdaBoost algorithm. GMOPTBoost can optimize the geometric mean accuracy and effectively solve the category imbalance problem by applying Gaussian gradient descent. The samples are constructed according to the following two phases. First, five class imbalance datasets are constructed to verify the effect of the class imbalance problem on the performance of the prediction model and the performance improvement effect of GMOPTBoost. Second, class balanced data are constituted through data sampling techniques to verify the performance improvement effect of GMOPTBoost. The main results of 30 times of cross-validation analyzes are as follows. First, the class imbalance problem degrades the performance of ensembles. Second, GMOPTBoost contributes to performance improvements of AdaBoost ensembles trained on imbalanced datasets. Third, Data sampling techniques have a positive impact on performance improvement. Finally, GMOPTBoost contributes to significant performance improvement of AdaBoost ensembles trained on balanced datasets.

A Study about the Perception of Scientifically Gifted Students Regarding a Program for Gifted, Based on Autonomous Learner Model (자율학습자 모형에 기반한 영재교육 프로그램에 대한 과학영재 학생들의 인식 연구)

  • Choe, Seung-Urn;Kim, Eun-Sook;Chun, Mi-Ran;Yu, Hee-Won
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.3
    • /
    • pp.575-596
    • /
    • 2012
  • Students' perception on a science program for gifted was investigated. The whole program was designed in consistency and integrity based on the Autonomous Learner Model suggested by Betts & Kercher(1999). 7th, 8th and 9th grade students were enrolled in this program, offered by G Education Institute for Gifted(GEI) located in Seoul. A survey was done to ask students' perception regarding the effect of the program. The survey consisted of statements about the expected effects of the program and students were asked if they agreed with the statements. Most students strongly agreed that GEI's program has positive effects. Students replied that they learned useful and interesting science contents, enjoyed meaningful experience of cooperating with members in small groups, and were challenged by the inquiry tasks. They recognized that they were being trained to become autonomous learners. They also said that their choices and decisions were respected, which resulted in positive effects on their ability to negotiate or to inquire actively. These implies that Autonomous Learner Model had been successfully applied. Although it was not clear autonomy of students was fully grown, the possibility of becoming an autonomous learner was evident. Satisfaction level is higher for the older students, implying that the integrity in the program gave accumulating effect. Students response showed that three sub-programs of GEI, the classes of each subject, conference at the end of the year and autonomous learner training played equally important role for students to learn the process of scientific inquiry and autonomous learning. This was a positive sign that the strategies for scientific inquiry and autonomous learning were embedded and integrated deeply in the program. The results of current research suggests that the integrity of a program based on a specific education model for the gifted could provide better education environment for the gifted students.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

A study on the use of a Business Intelligence system : the role of explanations (비즈니스 인텔리전스 시스템의 활용 방안에 관한 연구: 설명 기능을 중심으로)

  • Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.155-169
    • /
    • 2014
  • With the rapid advances in technologies, organizations are more likely to depend on information systems in their decision-making processes. Business Intelligence (BI) systems, in particular, have become a mainstay in dealing with complex problems in an organization, partly because a variety of advanced computational methods from statistics, machine learning, and artificial intelligence can be applied to solve business problems such as demand forecasting. In addition to the ability to analyze past and present trends, these predictive analytics capabilities provide huge value to an organization's ability to respond to change in markets, business risks, and customer trends. While the performance effects of BI system use in organization settings have been studied, it has been little discussed on the use of predictive analytics technologies embedded in BI systems for forecasting tasks. Thus, this study aims to find important factors that can help to take advantage of the benefits of advanced technologies of a BI system. More generally, a BI system can be viewed as an advisor, defined as the one that formulates judgments or recommends alternatives and communicates these to the person in the role of the judge, and the information generated by the BI system as advice that a decision maker (judge) can follow. Thus, we refer to the findings from the advice-giving and advice-taking literature, focusing on the role of explanations of the system in users' advice taking. It has been shown that advice discounting could occur when an advisor's reasoning or evidence justifying the advisor's decision is not available. However, the majority of current BI systems merely provide a number, which may influence decision makers in accepting the advice and inferring the quality of advice. We in this study explore the following key factors that can influence users' advice taking within the setting of a BI system: explanations on how the box-office grosses are predicted, types of advisor, i.e., system (data mining technique) or human-based business advice mechanisms such as prediction markets (aggregated human advice) and human advisors (individual human expert advice), users' evaluations of the provided advice, and individual differences in decision-makers. Each subject performs the following four tasks, by going through a series of display screens on the computer. First, given the information of the given movie such as director and genre, the subjects are asked to predict the opening weekend box office of the movie. Second, in light of the information generated by an advisor, the subjects are asked to adjust their original predictions, if they desire to do so. Third, they are asked to evaluate the value of the given information (e.g., perceived usefulness, trust, satisfaction). Lastly, a short survey is conducted to identify individual differences that may affect advice-taking. The results from the experiment show that subjects are more likely to follow system-generated advice than human advice when the advice is provided with an explanation. When the subjects as system users think the information provided by the system is useful, they are also more likely to take the advice. In addition, individual differences affect advice-taking. The subjects with more expertise on advisors or that tend to agree with others adjust their predictions, following the advice. On the other hand, the subjects with more knowledge on movies are less affected by the advice and their final decisions are close to their original predictions. The advances in predictive analytics of a BI system demonstrate a great potential to support increasingly complex business decisions. This study shows how the designs of a BI system can play a role in influencing users' acceptance of the system-generated advice, and the findings provide valuable insights on how to leverage the advanced predictive analytics of the BI system in an organization's forecasting practices.

The Effect of Teacher Support Program for the Integration of Handicapped Children on Teaching Efficacy of Daycare Center Teachers (장애 유아 통합보육을 위한 교사 지원이 어린이집 교사의 교사 효능감에 미치는 영향)

  • Park, Na Ri
    • Korean Journal of Child Education & Care
    • /
    • v.18 no.4
    • /
    • pp.247-265
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effect of teacher support program for integration of handicapped children on teaching efficacy of daycare center teachers. Methods: In the study, 12 day care teachers in 4 day care centers in Seoul and Gyeonggi area were selected as experimental groups and 12 teachers in 5 day care centers were selected as control group. Teacher education is carried out through group education, such as understanding of developmental area, curriculum modification, activity-based embedded intervention, cooperative learning, direct teaching, disability understanding education, behavior support, family support. Individual teacher education provided counseling on the reality of child care for children with disabilities that reflects the needs of teachers for integrated child care for handicapped children. Teacher's Efficacy in Inclusive Practices (TEIP) was used as a pre post test to measure teacher's efficacy change. In order to analyze the results of the study, two independent sample t tests were conducted on the difference between pre-post test of teacher efficacy between the two groups. Results: As a result, There was a significant difference in the pre-post change of teacher efficacy between the two groups. Conclusion/Implications: The results of this study are as follows, teacher support program provided immediate feedback in integrated child daycare center for the handicapped children, child care teachers improved their integrated handicapped children care expertise, provided responsive teacher support program to the actual needs of the site, teacher support program reflected various variables related to integration, and emphasized the cooperative relationship between researcher and child daycare center teacher. The results of this study can be used as actual data of field where lack of support for the integration of handicapped children is lacking.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.