• Title/Summary/Keyword: Embedded capacitor

Search Result 101, Processing Time 0.024 seconds

Dielectric Properties of LCP and $BaTiO_3-SrTiO_3$ Composites for Embedded Matching Capacitors (내장형 capacitor를 위한 LCP와 $BaTiO_3-SrTiO_3$ 복합재의 유전특성)

  • Kim, Jin-Cheol;Yoon, Sang-Jun;Yoon, Keum-Hee;Oh, Jun-Rok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.60-60
    • /
    • 2008
  • We manufactured Liquid Crystal Polymer (LCP) and (1-x)$BaTiO_3-xSrTiO_3$(BST) ceramic composites and investigated dielectric properties to use as embedded capacitor in printed circuit boards and replace LTCC substrates. The dielectric properties of these composites are varied with volume fraction of BST and ratios of BT/ST. Dielectric constants are in the range of 3~28. In addition, we could get low TCC and High Q value that could not achieve in other ceramic-polymer composites. Especially, in composite with x=0.4 and 50vol% BST, the dieletric constant and Q-value are 27 and 300, respectively. And more TCC is -116~145ppm/$^{\circ}C$ in the temperature range of -55~$125^{\circ}C$. We think that this composites can be used high-Q substrate material like LTCC and embedded temperature compensation capacitor in printed circuit boards.

  • PDF

Capacitance-Voltage Characterization of Ge-Nanocrystal-Embedded MOS Capacitors (Ge 나노입자가 형성된 MOS 캐패시터의 캐패시턴스와 전압 특성)

  • Park, Byoung-Jun;Choi, Sam-Jong;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.156-160
    • /
    • 2006
  • Capacitance versus voltage (C-V) curves of Ge-nanocrystal (NC)-embedded MOS capacitors with and without a single capping Al2O3 layer are characterized in this work. C-V curves of the Ge-NC-embedded MOS capacitor with the A12O3 layer are counterclockwise in the voltage sweeps, which indicates tile presence of charge storages in the Ge NCs by the tunnelling of charge carriers between the Si substrate and the Ge NCs. In the Ge-NC-embedded MOS capacitor without Al2O3 layer, clockwise hysteresis of the C-V curves and leftward shifts of the flat band voltages are observed for the embedded MOS capacitor without the Al2O3 layer. It is suggested that the characteristics of the C-V curves are due to the charge trapping at oxygen vacancies within a SiO2 layer. In addition, the illumination of the white light enhances the lower capacitance part of the C-V hysteresis. The origin for the enhancement is discussed in this paper.

  • PDF

The Properties of $Bi_2Mg_{2/3}Nb_{4/3}O_7$ Thin Films Deposited on Copper Clad Laminates For Embedded Capacitor (임베디드 커패시터의 응용을 위해 CCL 기판 위에 평가된 BMN 박막의 특성)

  • Kim, Hae-Won;Ahn, Jun-Ku;Ahn, Kyeong-Chan;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.45-45
    • /
    • 2007
  • Capacitors among the embedded passive components are most widely studied because they are the major components in terms of size and number and hard to embed compared with resistors and inductors due to the more complicated structure. To fabricate a capacitor-embedded PCB for in-line process, it is essential to adopt a low temperature process (<$200^{\circ}C$). However, high dielectric materials such as ferroelectrics show a low permittivity and a high dielectric loss when they are processed at low temperatures. To solve these contradicting problems, we studied BMN materials as a candidate for dielectric capacitors. processed at PCB-compatible temperatures. The morphologies of BMN thin films were investigated by AFM and SEM equipment. The electric properties (C-F, I-V) of Pt/BMN/Cu/polymer were evaluated using an impedance analysis (HP 4194A) and semiconductor parameter analyzer (HP4156A). $Bi_2Mg_{2/3}Nb_{4/3}O_7$(BMN) thin films deposited on copper clad laminate substrates by sputtering system as a function of Ar/$O_2$ flow rate at room temperature showed smooth surface morphologies having root mean square roughness of approximately 5.0 nm. 200-nm-thick films deposited at RT exhibit a dielectric constant of 40, a capacitance density of approximately $150\;nF/cm^2$, and breakdown voltage above 6 V. The crystallinity of the BMN thin films was studied by TEM and XRD. BMN thin film capacitors are expected to be promising candidates as embedded capacitors for printed circuit board (PCB).

  • PDF

Electrical Properties of BaTiO3-based 0603/0.1µF/0.3mm Ceramics Decoupling Capacitor for Embedding in the PCB of 10G RF Transceiver Module

  • Park, Hwa-sun;Na, Youngil;Choi, Ho Joon;Suh, Su-jeong;Baek, Dong-Hyun;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1638-1643
    • /
    • 2018
  • Multi-layer ceramic capacitors as decoupling capacitor were fabricated by dielectric composition with a high dielectric constant. The fabricated decoupling capacitors were embedded in the PCB of the 10G RF transceiver module and evaluated for the characteristics of electrical noise by the level of AC input voltage. In order to further improve the electrical properties of the $BaTiO_3$ based composite, glass frit, MgO, $Y_2O_3$, $Mn_3O$, $V_2O_5$, $BaCO_3$, $SiO_2$, and $Al_2O_3$ were used as additives. The electrical properties of the composites were determined by various amounts of additives and optimum sintering temperature. As a result of the optimized composite, it was possible to obtain a density of $5.77g/cm^3$, a dielectric constant of 1994, and an insulation resistance of $2.91{\times}10^{12}{\Omega}$ at an additive content of 5wt% and a sintering temperature of $1250^{\circ}C$. After forming a $2.5{\mu}m$ green sheet using the doctor blade method, a total of 77 layers were laminated and sintered at $1180^{\circ}C$. A decoupling capacitor with a size of $0.6mm(W){\times}0.3mm(L){\times}0.3mm(T)$ (width, length and thickness, respectively) and a capacitance of 100 nF was embedded using a PCB process for the 10G RF Transceiver modules. In the range of AC input voltage 400mmV @ 500kHz to 2200mV @ 900kHz, the embedded 10G RF Transceiver modules evaluated that it has better electrical performance than the non-embedded modules.

Ceramic capacitor module for hybrid-electric vehicles using embedded capacitor (임베디드 커패시터를 이용한 하이브리드 자동차 커패시터 모듈 특성 연구)

  • Yoon, Jung-Rag;Moon, Bong-Haw;Lee, Keong-Min;Han, Jeoung-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.18-18
    • /
    • 2009
  • 본 논문은 X8R 온도 특성을 가지는 유전체 원료를 이용하여 고용량이면서 고압화가 가능한 적층 칩 캐패시터를 제작하였다. 대형 고압용 적층 칩 캐패시터를 위한 내부 전극 설계 및 외부 전극 형성 방법에 대한 연구도 함께 진행하였다. 적층 칩 캐패시터를 하이브리드 자동차 및 산업용 인버터의 DC-Link으로 사용하기 적합한 모듈을 제작하였으며 모듈 설계시 고유전율의 에폭시-세라믹 필름을 하였다. 본 모듈을 평가한 결과 기존 캐패시터 모듈에 비하여 2/3 크기의 소형화를 얻을 수 있었으며 ripple 전류 및 발열 특성이 매우 우수함을 확인하였다.

  • PDF

Design and Fabrication of Low Temperature Processed $BaTiO_3$ Embedded Capacitor for Low Cost Organic System-on-Package (SOP) Applications (저가형 유기 SOP 적용을 위한 저온 공정의 $BaTiO_3$ 임베디드 커페시터 설계 및 제작)

  • Lee, Seung-J.;Park, Jae-Y.;Ko, Yeong-J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1587-1588
    • /
    • 2006
  • Tn this paper, PCB (Printed Circuit Board) embedded $BaTiO_3$ MIM capacitors were designed, fabricated, and characterized for low cost organic SOP applications by using 3-D EM simulator and low temperature processes. Size of electrodes and thickness of high dielectric films are optimized for improving the performance characteristics of the proposed embedded MIM capacitors at high frequency regime. The selected thicknesses of the $BaTiO_3$ film are $12{\mu}m$, $16{\mu}m$, and $20{\mu}m$. The fabricated MIM capacitor with dielectric constant of 30 and thickness of $12{\mu}m$ has capacitance density of $21.5p\;F/mm^2$ at 100MHz, maximum quality factor of 37.4 at 300 MHz, a quality factor of 30.9 at 1GHz, self resonant frequency of 5.4 GHz, respectively. The measured capacitances and quality factors are well matched with 3-D EM simulated ones. These embedded capacitors are promising for SOP based advanced electronic systems with various functionality, low cost, small size and volume.

  • PDF

A Study on the Characteristics of Wireless Sensor Powered by IDE Embedded Piezoelectric Cantilever Generators Using Conveyor Vibration (컨베이어 진동을 이용한 IDE 적층 압전 캔틸레버 발전 소자의 무선 센서 응용 연구)

  • Kim, Chang-il;Lee, Min-seon;Cho, Jung-ho;Paik, Jong-hoo;Jang, Yong-ho;Choi, Beom-jin;Son, Cheon-myoung;Seo, Duk-gi;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.769-775
    • /
    • 2016
  • Characteristics of a wireless sensor powered by the IDE (interdigitated electrode) embedded piezoelectric cantilever generator were analyzed in order to evaluate its potential for use in wireless sensor applications. The IDE embedded piezoelectric cantilever was designed and fabricated to have a self-resonance frequency of 126 Hz and acceleration of 1.57 G, respectively, for the mechanical resonance with a practical conveyor system in a thermal-power plant. It produced maximum output power of 2.81 mW under the resistive load of $160{\Omega}$ at 126 Hz. The wireless sensor module is electrically connected to a rectifier capacitor with capacity of 0.68 farad and 3.8 V for power supply by the piezoelectric cantilever generator. The unloaded capacitor could be charged as a rate of approximately $365{\mu}V/s$ while the capacitor exhibited that of 0.997 mV/min. during communication under low duty cycle of 0.2%. Therefore, it is considered that the fabricated IDE embedded piezoelectric cantilever generator can be used for wireless sensor applications.

Composite $BaTiO_3$ Embedded capacitors in Multilayer Printed Circuit Board (다층 PCB에서의 $BaTiO_3$ 세라믹 Embedded capacitors)

  • You, Hee-Wook;Park, Yong-Jun;Koh, Jung-Hyuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.110-113
    • /
    • 2008
  • Embedded capacitor technology is one of the effective packing technologies for further miniaturization and higher performance of electric packaging system. In this paper, the embedded capacitors were simulated and fabricated in 8-layered printed circuit board employing standard PCB processes. The composites of barium titanante($BaTiO_3$) powder and epoxy resin were employed for the dielectric materials in embedded capacitors. Theoretical considerations regarding the embedded capacitors have been paid to understand the frequency dependent impedance behavior. Frequency dependent impedance of simulated and fabricated embedded capacitors was investigated. Fabricated embedded capacitors have lower self resonance frequency values than that of the simulated embedded capacitors due to the increased parasitic inductance values. Frequency dependent capacitances of fabricated embedded capacitors were well matched with those of simulated embedded capacitors from the 100MHz to 10GHz range. Quality factor of 20 was observed and simulated at 2GHz range in the 10 pF embedded capacitors. Temperature dependent capacitance of fabricated embedded capacitors was presented.