• Title/Summary/Keyword: Embankment pile

Search Result 89, Processing Time 1.903 seconds

Numerical Evaluation of Geosynthetic Reinforced Column Supported Embankments (개량체 기둥지지 성토공법의 지오그리드 보강효과에 대한 수치해석)

  • Jung, Duhwoe;Jeong, Sidong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.13-22
    • /
    • 2021
  • Pile or column supported embankments have been increasingly employed to construct highway or railway embankments over soft soils. Piles or columns of stiffer material installed in the soft ground can provide the necessary support by transferring the embankment load to a firm stratum using a soil arching. However, there has been reported to occur a relatively large differential settlement between the piles and the untreated soils. Geosynthetic reinforced pile or column supported embankment (GRPS) is often used to minimize the differential settlement. Two dimensional finite element anlyses have been performed on both the column supported embankments and the geogrid reinforced column supported embankments by using a PLAXIS 2D to evaluate the soil arching effect. Based on the results obtained from finite element analyses, the stress reduction ratio decreases as the area replacement ratio increases in the column supported embankments. For the geogrid reinforced column supported embankments, the geogrid reinforcemnt can reduce differential settlements effectively. In additon, the use of stiffer geogrid is appeared to be more effective in reducing the differential settlements.

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile의 현장적용을 위한 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.32-41
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement Recently, sand, the principal source of sand drain, is running out. The laboratory model tests were carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. The characteristics of consolidation were studied with data obtained from the measuring instrument place on the surface of the container. The parameter study was performed on the marine clayey soil before and after the test in order to verify the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

Reinforcing Effect and Behaviors of Root-Pile in Heavy-Duty Direct Shear Test (대형직접전단시험에 의한 뿌리말뚝의 거동 및 보강효과)

  • Han, Jung-Geun;Jang, Sin-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.23-30
    • /
    • 2002
  • In recently, using of steel reinforcements by reinforcing materials of the reinforced earth, micro-pile and root-pile etc,. is wide-spreading in the stabilizing control of cutting and embankment slopes, but the failure mechanism of reinforced earth as well as the effect of insert angles or types of reinforcement and others are not defined clearly. In this study, therefore heavy-duty direct shear tests were exercised on the reinforced soil and the non-reinforced soil, which was executed for research on the interaction of soil-reinforcement and theirs behavior. The hardness and softness and the standard sands were used for modeling of reinforced soil, the material constants for the computer simulation were estimated from the results of CD-Test. The effects of reinforcing and of friction increasing on the softness, area ratio of reinforcements is equal, were the better than them of the hardness, as well the reinforcing effects of shear strength without regard to the area ratio is much the same at $10^{\circ}$, insert angle of reinforced bar, differ from them of the existing study. Then, the results of numerical analysis showed that the behavior of reinforcements displayed bending resistance and shear resistance at $15^{\circ}$ and $30^{\circ}$, respectively. Also, the state of strain transfer was observed and the behavior of resistance mechanism on reinforcements presented almost the same them of landslides stabilizing pile.

An Analytical Study of Slope Stability to Reinforcement Stage in Cut Slope (절개사면에서의 보강단계별 사면안정성에 대한 해석적 연구)

  • Kang, Ki-Chun;Song, Young-Suk;Hong, Won-Pyo;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.724-731
    • /
    • 2006
  • The purpose of this study is to estimate a landslide using the SLOPILE program from the slope reinforced by slope stability systems such as soil nailing and pile. To do this, cutting slope located at Donghae-Highway in Kwangwon-Do was considered. The behavior of slope was monitored for a long term by using instrumentation according to the reinforcement stages. The sequence of reinforcement stages was followed as pile installation, boring, soil nailing installation, anchoring and embankment. The result from this case study shows that the safety factor of slope depends on the reinforcement stage more or less.

  • PDF

Study on Behavior of Pile Foundation in Soft Soils (연약지반상 기초말뚝의 거동 연구)

  • Kim Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.428-431
    • /
    • 2005
  • In this paper, the displacement and stress of pile foundation constructed in the soft cohesive soils were measured and investigated at each construction phase. The piles belongs to compressive stress then extension due to lateral flow of soft soils. Battered piles showed different stress state according to construction direction. The lateral displacements of piles radically occurred at the embankment phase.

  • PDF

A Study on Influence of Constructed Bridge Abutment in Landfill Slope under Laterally Displacing (측방유동 발생 시 성토사면에 시공된 교대의 영향에 대한 연구)

  • Lee, Hangyu;Hong, Jongouk;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.31-41
    • /
    • 2013
  • The damage caused by lateral movement occurs frequently on site where abutment or retaining wall was built on soft ground along with embankment behind and the study on stability of abutment against lateral movement has been mostly focused on soft ground. However lateral movement occurs not only on soft ground but also on embankment slope which causes the impact on structure. The bridges built in Korea are mostly on mountainous area than soft ground. This study is intended to analyze the ground behavior resulting from lateral movement using finite element analysis method to the section as well as propose the basic data for abutment design on embankment slope through the analysis of the outcome of reinforcement method. As a result, when it comes to the reinforcement with soil surcharge and stabilized pile in slope, lateral movement was reduced by 4~30% and displacement on bearing shoe on abutment was reduced by 2~13%. On the contrary, when reinforced with EPS, lateral float was reduced by 97% and maximum horizontal displacement of bearing shoe on abutment was reduced by 95%. Thus, it's necessary to identify the design technique which is applicable to domestic condition through additional tests and more reliable study using numerical analysis and comparing the measured values shall follow.

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - A Study on the Centrifuge Model Tests - (측방유동을 받는 교대말뚝기초의 거동분석 (I) - 원심모형실험 연구 -)

  • 서정주;서동희;정상섬;김유석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.5-19
    • /
    • 2003
  • A series of centrifuge model tests were conducted to investigate the behavior of piled bridge abutments subjected to lateral soil movements induced by approach embankments. The effect of clay layer depth and the rate of embankment construction on piled bridge abutments are the main focus of this study. Tests were performed for two loading types: (1) incremental loading applied in six lifts to the final embankment height; (2) instant loading corresponding to the final embankment height applied in one lift quickly. A variety of instrumentations such as LVDTs, strain gauges, earth pressure transducers, and pore pressure transducers are installed in designed positions in order to clarify the soil-pile interaction and the short- and long-term behavior for piled bridge abutments adjacent to surcharge loads. Based on the results of a series of centrifuge model tests, the distribution of lateral flow induced by staged embankment construction has trapezoidal distribution. The maximum lateral soil pressure is about 0.75$\gamma$H at surcharge loading stage, and about 0.35 $\gamma$H at over 80% consolidated stage.

A Case Study on the Lateral Movement of Abutment Foundations (교대의 측방변위 발생에 대한 사례분석)

  • 이종규;박찬호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03a
    • /
    • pp.31-42
    • /
    • 1994
  • In this paper, a case study was presented to analyze the lateral movement of abutment founded on the soft soil with steel pile foundations and was to propose its remedial methods. The main reason for the displacement was due to the lack of the lateral bearing capacity of piles and even more seriously the lateral movement of the soil arising from the construction of as embankment behind the abutment. This project showed that the passive state as well as the active state of piles must be considered for the proper design of abutment foundations.

  • PDF

Evaluation of the Low Replacement Reinforced Ground Using Laboratory Tests (실내시험을 이용한 저치환 보강지반의 평가)

  • Bae, Woo-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.131-137
    • /
    • 2008
  • SCP(Sand Compaction Pile) method that forms a composite ground by driving compacted sand piles into the soft ground. This method is one of the soil improvement techniques for reinforcing and strengthening soft ground deposits. This thesis describes the investigation on the behavior of soft ground reinforced with SCP by low improvement ratio. Direct shear test and consolidation test carried out to verified behavior of composite ground reinforced with SCP. Test results were discussed with reference to the amount of consolidation settlement, variation of shear resistance with area replacement ratio and effect of the stress concentration. And, laboratory model loading test carried out to verified the effect of the location and failure mode of reinforced embankment. Residual shear strength varies with the area replacement and constrict load in the low replacement ratio. Calculated stress concentration ratio overestimate than proposed valve by experimental, theoretical and analytical method. As regards the location, improving right below of the top of the slope was more effective than below of the toe of the slope. This thesis carried out to obtain fundamental information of behavior of the composit ground. Hereafter, centrifuge test that reproduce stress state of the in-situ must be necessary through the further study about pile penetration, reinforce position and construct time.

A Study on the Behavior of Piled Abutment Subjected to Lateral Soil Movement of Soft Ground Improved by Deep Cement Mixing Method (DCM 공법으로 개량된 연약지반의 측방유동을 받는 교대 말뚝기초의 거동 분석에 관한 연구)

  • Choi, Yeonho;Kang, Gyeongho
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • The construction on these flimsy ground, activation of unsymmetrical surcharges, can often cause of the embankment road lateral flow or the destruction of the activities. In this study, the stability of the abutment pile foundation installed on soft ground and its behavior has been evaluated. The behavior of the abutment pile foundation under lateral flow was studied by verifying the behavior and reinforcement effects of the abutment pile foundation of previous studies about horizontal loads acting on the pile due to the lateral flow of the ground by performing finite element analysis. As a result of the consolidation analyses, the undrained cohesion or the strength of the soft ground, was increased by about 1.1 to 1.8 times by the increase in the strength of the soft ground according to the degree of consolidation. It is deemed reasonable to use 3.8 cm of the allowable displacement both economically and constructively, but considering the importance of the structure and the uncertainty of the ground, measurement shall be carried out during construction and thorough safety management of the lateral flow should be done.