• Title/Summary/Keyword: Embankment on Soft Soil

Search Result 108, Processing Time 0.022 seconds

An analytical Study on the Influence length of SCP Method (측방이동 대책공법(SCP)의 영향범위 산정에 관한 해석적 연구)

  • Lee, Young-Keun;Park, Chun-Sik;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.152-160
    • /
    • 2010
  • In this study, cohesion of soft ground, soft ground depth and embankment height varying conditions, such as the impact of each condition after the calculation of the range, SCP was performed to evaluate the applicability of the method. Reinforcing effects of scope, and permit lateral movement of SCP 2D and 3D analysis of the program were calculated by the displacement ratio, the result follows. The height and depth of soft soil embankment with increasing and decreasing the cohesion tends to be affected were long range, SCP method applied by the finite element analysis Cu = 1.0tf/$m^2$, embankment height is 3.0m depth of soft soil can be applied in a less than 5.0m, and Cu = 3.0tf/$m^2$, embankment height, the soft soil depth is 3.0m 12.0m, Cu = 3.0tf/$m^2$, embankment height is 5.0m less than 7.0m depth of soft soil can be applied in was. And Cu = 5.0tf/$m^2$, embankment height is 3.0m below 15.0m depth rouge anti Floor, Cu = 3.0tf/$m^2$, embankment height of 5.0m 12.0m depth below the soft soil, Cu = 5.0tf/$m^2$, If the depth of soft soil embankment height of 7.0m and below 5.0m was applicable.

  • PDF

A Study on The Sliding Failure Analysis of Embankment Slope in Soft Ground Area Under Construction (시공중인 연약지반 성토부 활동파괴의 원인분석에 관한 연구)

  • Chun, Byung-Sik;Kim, Il-Hwan;Lee, Young-Sub;Jung, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1036-1041
    • /
    • 2008
  • In order to analysis the reason of sliding failure in embankment slope under construction in soft soil area, a model section located in Gimhae Region in Gyeongsangnam-Do, where the sliding failure had been occurred during embankment works in soft soil area, had been selected. This area had been firstly treated with the Pack Drain Method, and additional embankment works of 9.7 meters out of total 14 meters in thickness had been under construction. The results of analysis showed that the reason of sliding failure were overspeed in embankment construction and the overestimation of design factors in calculating strength of each layer of embankment and poor management and inaccuracy reading of measurement devices.

  • PDF

Evaluations of a Seismic Performance of Geosynthetic-Reinforced Embankment Supporting Piles for a Ultra Soft Ground (침하 억제를 위하여 초연약지반에 설치된 섬유보강 성토지지말뚝의 내진성능 평가)

  • Lee, Il-Wha;Kang, Tae-Ho;Lee, Su-Hyung;Lee, Sung-Jin;Bang, Eui-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.918-927
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. Geosynthetic-reinforced embankment supporting piles method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In the paper, the evaluations of a seismic performance of geosynthetic-reinforced embankment piles for a ultra soft ground during earthquake were studied. the equivalent linear analysis was performed by SHAKE for soft ground. A seismic performance analysis of Piles was performed by GROUP PILE and PLAXIS for geosynthetic-reinforced embankment piles. Guidelines is required for pile displacement during earthquake. Conclusions of the studies come up with a idea for soil stiffness, conditions of pile cap, pile length and span.

  • PDF

Soil arching analysis in embankments on soft clays reinforced by stone columns

  • Fattah, Mohammed Y.;Zabar, Bushra S.;Hassan, Hanan A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.507-534
    • /
    • 2015
  • The present work investigates the behavior of the embankment models resting on soft soil reinforced with ordinary and stone columns encased with geogrid. Model tests were performed with different spacing distances between stone columns and two lengths to diameter ratios (L/d) of the stone columns, in addition to different embankment heights. A total number of 42 model tests were carried out on a soil with undrianed shear strength $${\sim_\sim}10kPa$$. The models consist of stone columns embankment at s/d equal to 2.5, 3 and 4 with L/d ratio equal 5 and 8. Three embankment heights; 200 mm, 250 mm and 300 mm were tested for both tests of ordinary (OSC) and geogrid encased stone columns (ESC). Three earth pressure cells were used to measure directly the vertical effective stress on column at the top of the middle stone column under the center line of embankment and on the edge stone column for all models while the third cell was placed at the base of embankment between two columns to measure the vertical effective stress in soft soil directly. The performance of stone columns embankments relies upon the ability of the granular embankment material to arch over the 'gaps' between the stone columns spacing. The results showed that the ratio of the embankment height to the clear spacing between columns (h/s-d) is a key parameter. It is found that (h/s-d)<1.2 and 1.4 for OSC and ESC, respectively; (h is the embankment height, s is the spacing between columns and d is the diameter of stone columns), no effect of arching is pronounced, the settlement at the surface of the embankment is very large, and the stress acting on the subsoil is virtually unmodified from the nominal overburden stress. When $(h/s-d){\geq}2.2$ for OSC and ESC respectively, full arching will occur and minimum stress on subsoil between stone columns will act, so the range of critical embankment height will be 1.2 (h/sd) to 2.2 (h/s-d) for both OSC and ESC models.

Case Study for Lateral Displacement of Caisson installed on Deep Soft Soils (대심도 연약지반상에 건설되는 케이슨의 측방변형 사례 연구)

  • Kim, Myung-Hak;Yoon, Min-Seung;Lee, Sang-Wook;Lee, Chea-Kyun;Han, Byoung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.940-950
    • /
    • 2010
  • In case of uneven surcharge like backfill or embankment after constructing caisson applied on the deep soft marine deposits, lateral deformation of soft soils would happen due to plastic deformation of soil particles by increase of excess pore water pressure. Lateral deformation of soil will result in the caisson displacement which affects soft soil-caisson structure safety. Soft soil was improved by soil compaction pile method, and then gravity caisson was installed. Soil deformations were monitored and analyzed with step by step backfill and embankment behind the caisson. Amount and speed of lateral deformation after the installation of caissons were closely related with the time of backfill and embankment. The relationship between maximum lateral displacement($\Delta_y$) in front of caisson and settlement($\Delta_s$) can be expressed as $\Delta_y=(0.0871)\Delta_s+122.95$. Soft soil depth did not affect the lateral displacement of caisson in this study, which can be explained the soft soil improvement under the caisson by S.C.P. method. Substantially the amount and speed of the lateral deformation of caisson were closely related with the uneven surcharging rate behind caisson.

  • PDF

Transformation of Load Transfer Soil Arch in Geosynthetics-Reinforced Piled Embankment: A Numerical Approach (성토지지말뚝공법의 아치형 응력전달구조 변화에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.5-16
    • /
    • 2016
  • In the geosynthetics-reinforced piled embankment the effects of soft soil stiffness, friction angle of the fill material, tensile stiffness of geosynthetics, and height of the embankment on the load transfer soil arch measured by the critical height were numerically investigated. Results from parametric studies show that the magnitude of the soft soil stiffness is the most influencing factor on the critical height. The contour charts of the critical height with respect to the combination of the soft soil stiffness and other parameters were presented. The charts show that the critical height sensitively varies with the combination of the soft soil stiffness and the height of embankment. Under the sufficiently low stiffness of soft soil, the critical height sensitively varies with the friction angle of the fill material. Once the geosynthetic layer is placed, however, the magnitude of the tensile stiffness of the geosynthetic layer hardly influences the critical height of the soil arch.

Interpretation of Soft Ground Deformation under Embankment using the Electrical Resistivity Survey (전기비저항탐사를 이용한 성토하부 연약지반의 변형 해석)

  • Kim, Jae-Hong;Hong, Won-Pyo;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Soil deformations such as settlement, heaving and lateral flow have frequently happened on marine reclaimed soft grounds due to embankment filling or banking. The electrical resistivity survey was applied to investigate on ground surface such soil deformation without disturbance of ground. A test embankment was performed to assess soil deformation in marine reclaimed soft grounds, where was located at Sihwa area in western coast of Korean peninsula. The soft ground was composed of clayey sediments. After embankment filling, the boundary of soil deformation affected by the filling could be investigated with application of the electrical resistivity survey. The result of electric resistivity survey shows that the extent of deformation is about 5 m laterally to the southern direction of embankment and about 5~6 m vertically in depth, which is about 1-1.2 times of embankment height. This shows that the electric resistivity survey can be applied to interpret the ground deformation in a soft ground region.

A Study on Lateral Movement of Improved Soft Ground under Embankment (성토하부 개량된 연약지반의 측방이동에 관한 연구)

  • Hong, Won-Pyo;Han, Jung-Geun;Park, Jae-Seok;Kim, Young-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1094-1101
    • /
    • 2005
  • The stability of embankment on the soft ground has included problems on stabilities of embanked body and soft soil, which related with vertical displacement and lateral movement of the soft ground especially. The judge methods for the potentialities of lateral movement have been used in order to stabilization assessment during and after construction of the embankment. In this study, the judge methods on the improved soft ground suggested, which compared with exist judge methods on lateral movement. It is due to recent trend using embanked structures on the soft ground most of improved.

  • PDF

Applications of the EPS Embankment Metod to Earth Fils at the Seaside (해안 매립지역의 EPS 성토공법 적용)

  • 장용채;조성민;이유옥
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.219-224
    • /
    • 1999
  • The expansion of old road is needed in construction the entrance at the $\bigcirc$$\bigcirc$I/C road in $\bigcirc$$\bigcirc$city. To strength the national competition, many agents who concerned do their best for finishing that construction early as soon as possible. In generally, soil embankment on soft foundation is caused to reduce the stability by making the settlement of ground surface due to the over load. Thus, we try to make it stable by building EPS embankment construction which in our working place is one kind of the method of light embankment construction after excavating the original ground.

Numerical modelling of Haarajoki test embankment on soft clays with and without PVDs

  • Yildiz, Abdulazim;Uysal, Firdevs
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.707-726
    • /
    • 2015
  • This paper investigates the time dependent behaviour of Haarajoki test embankment on soft structured clay deposit. Half of the embankment is constructed on an area improved with prefabricated vertical drains, while the other half is constructed on the natural deposit without any ground improvement. To analyse the PVD-improved subsoil, axisymmetric vertical drains were converted into equivalent plane strain conditions using three different approaches. The construction and consolidation of the embankment are analysed with the finite element method using a recently developed anisotropic model for time-dependent behaviour of soft clays. The constitutive model, namely ACM-S accounts for combined effects of plastic anisotropy, interparticle bonding and degradation of bonds and creep. For comparison, the problem is also analysed with isotropic Soft Soil Creep and Modified Cam Clay models. The results of the numerical analyses are compared with the field measurements. The results show that neglecting effects of anisotropy, destructuration and creep may lead to inaccurate predictions of soft clay response. Additionally, the numerical results show that the matching methods accurately predict the consolidation behaviour of the embankment on PVD improved soft clays and provide a useful tool for engineering practice.