• Title/Summary/Keyword: Embankment construction

Search Result 344, Processing Time 0.025 seconds

Stability Analysis of the Reinforced Embankment on Soft Foundations using the Limit Equilibrium Method (한계평형법에 의한 연약지반 보강성토의 안정해석)

  • 고남영;고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.101-110
    • /
    • 1995
  • The use of geotextile as reinforced materials in Soil structures has become widespread throughout the world. Geotextile reinforcement has been used in retaining walls, slope of embankment and especially soft foundation, etc. In the past, however, its design and construction have been performed empirically. In this study, to investigate of the effect of geotextiles reinforced slope of the embankment on a very soft foundation, a limit equilibrium analysis program calculating the safety factor of embankment on very soft foundation was developed. The study was focussed on such factors as type of geotextile, tensile strength, amount of reinforcement, and inclination of embankment. And the 4imit equilibrium analysis program was written on the basis of Low's slope stability theory with some modification. The following conclusions were drawn from this study. (1) The orientation of reinforcement can be assumed either horizontal or tangential to the slip circle. The factor of safety with tangential reinforcement is larger than that with the horizontal reinforcement. (2) In general, the factor of safety increases, as the slope reduces. However, it is preferable to use geotextiles with higher tensile strength rather than to reduce the slope of the embankment, because it is difficult to adjust the slope as desired. (3) The factor of safety obtained by numerical computation is affected only by the tensile strength, but not by the type of the geotextile.

  • PDF

An Experimental Study of Non-Steady State Seepage in the Levee Model by Parallel Water Flow (수평흐름에 의한 제방모형내의 비정상침투에 관한 실험적 연구)

  • Shin, Bang Woong;Lee, Bong Jik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1253-1263
    • /
    • 1994
  • The stability of the embankment is depended upon the location of seepage line. As the seepage flow occurs in the embankment, the slope of the embankment loses its stability. Of particular interest is the stability following a rapid change of embankment level. The variation of seepage line in the embankment model according to flow velocity was investigated. In addition to this non-steady state flow in embankment by a fluctuation of water level is discussed. The experimental model was construction with slopes of 1 : 2.5 and flow velocity is turned from 60 cm/sec~90 cm/sec. Analysis of the experimental results, the seepage line is influenced by flow velocity and coefficient of permeability.

  • PDF

Numerical modelling of Haarajoki test embankment on soft clays with and without PVDs

  • Yildiz, Abdulazim;Uysal, Firdevs
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.707-726
    • /
    • 2015
  • This paper investigates the time dependent behaviour of Haarajoki test embankment on soft structured clay deposit. Half of the embankment is constructed on an area improved with prefabricated vertical drains, while the other half is constructed on the natural deposit without any ground improvement. To analyse the PVD-improved subsoil, axisymmetric vertical drains were converted into equivalent plane strain conditions using three different approaches. The construction and consolidation of the embankment are analysed with the finite element method using a recently developed anisotropic model for time-dependent behaviour of soft clays. The constitutive model, namely ACM-S accounts for combined effects of plastic anisotropy, interparticle bonding and degradation of bonds and creep. For comparison, the problem is also analysed with isotropic Soft Soil Creep and Modified Cam Clay models. The results of the numerical analyses are compared with the field measurements. The results show that neglecting effects of anisotropy, destructuration and creep may lead to inaccurate predictions of soft clay response. Additionally, the numerical results show that the matching methods accurately predict the consolidation behaviour of the embankment on PVD improved soft clays and provide a useful tool for engineering practice.

Finite Element Analysis for the Effects on the Stiffness of the Embankment and Sandmat on the Deformation Property and the Safety of Road Embankment (성토체 및 모래매트의 강성이 하부지반의 변형과 성토체의 안전에 미치는 영향에 대한 유한요소해석)

  • Bae, Woo-Seok;Kim, Jong-Woo;Kwon, Young-Cheul
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.57-65
    • /
    • 2007
  • Effects on the stiffness of the embankment and sandmat on the construction safety of road embankment was investigated in this study by the numerical experiments using FEM. Two points was mainly focused in this study especially. First the deformation characteristics by the change of the stiffness of sand mat and embankment was investigated by the analyzing the consolidation settlement at the center of the embankment and the lateral displacement at the toe of the embankment. And, the effect of the stiffness on the stress distribution characteristics was also investigated in this study. Furthermore, slope stability analysis was carried out to gain the safe factor by change the stiffness of the sandmat and the embankment. The objective of the study is supplying the result of the numerical experiments for the geotechnical engineers who use the FEM for the safety design of the soil structures. As a result, the stiffness of the superstructures greatly affects on the deformation characteristics both in consolidation settlement and lateral displacement. However, it can be aware that it is not dominants to the stress distribution in the aspect that the no changes in the residual excess pore water pressure. Therefore, the decision of the stiffness has to be carried out deliberately considering not only the consolidation the magnitude of the settlement and the lateral displacement, but the slope stability.

Unsteady Flow Analysis for the Design of Local Scour Protection by HEC-RAS(UNET) Model in the River Reach Affected by Tide (HEC-RAS 모형에 의한 감조하천구간 부정류 해석 및 세굴보호공 설계)

  • Namgung, Don;Cho, Doo-Chan;Yoon, Kwang-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1138-1142
    • /
    • 2005
  • The tidal river is a river affected by tide, which causes the water level to rise and fall two times everyday periodically. The local velocity across the river could be very fast because of the cross-sectional characteristics of the river even though it's not a rainy season. Therefore extreme local scour could take place around hydraulic structures such as piers and caissons due to backward flow velocity. For the construction of pier foundation of Ilsan-bridge In the Han River, the field observations were performed to get the velocity and water level. The numerical analysis was performed by HEC-RAS(UNET). The relationship between measured maximum velocity and calculated mean velocity is achieved, which is used to estimate the velocity and water level as the construction is proceeding. Countermeasures for scour were designed with the results of the hydraulic analysis to avoid potential damage during construction work. According to the results of monitoring, the velocity increase after temporary road embankment was negligible, from which it is considered that the degradation of main channel compensated for the constriction of cross-section by embankment.

  • PDF

Disaster reduction technique based on the case study on embankment failures (댐.제방유실 사고사례를 통한 재해경감 대책기술)

  • Hong, Byug-Man;Kim, Hyun-Tae;Kang, Byung-Yoon;Yoo, Ki-Cheong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.117-128
    • /
    • 2005
  • Korea is affected by typhoon 2-3 times a year, and 50${\sim}$60 % of annual rainfall is concentrated during summer with heavy daily precipitation. Recently such natural conditions cause many of failures or damages of reservoirs and embankments. Overflow by heavy flood is the main cause that results 54.2 % of total embankment failures with damages of spillway, outlet channel and stilling basin. Since damages by overflow are triggered by scour of soils nearby the structures, use of proper backfill materials with great resistance against erosion should be considered and application of suitable construction method to protect erosion may be adopted. Most failures of levee are caused by piping along the surface of cross-structure underneath levee. Such failures may be protected by deep consideration of piping at the stage of design and good quality control during construction. Sufficient magnitude of spillway and outlet channel is the ideal way to prevent failures by the flood. For existing structures, remodeling with reinforcement to protect against flood with review of required storage of dam should be considered.

  • PDF

Settlement behavior and controlling effectiveness of two types of rigid pile structure embankments in high-speed railways

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun;Su, Hui
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.847-865
    • /
    • 2016
  • In this study, a series of geotechnical centrifugal tests were conducted to investigate the effectiveness of settlement control of two types of rigid pile structure embankments (PRSE) in collapsible loess under high-speed railway embankments. The research results show that ground reinforcement is required to reduce the post-construction settlement and settlement rate of the embankments. The rigid pile structure embankments using rigid piles can substantially reduce the embankment settlement in the construction of embankments on collapsible loess, and the efficiency in settlement reduction is affected by the pile spacing. The pile-raft structure embankments (PRSE) have much stronger ability in terms of the effectiveness of settlement control, while the pile-geogrid structure embankments (PGSE) provides rapid construction as well as economic benefits. Rational range of pile spacing of PRSE and PGSE are suggested based on the requirements of various railways design speeds. Furthermore, the time effectiveness of negative skin friction of piles and the action of pile-cap setting are also investigated. The relevant measures for improving the bearing capacity and two parts of transition zone forms as positive control mean have been suggested.

Method of Reducing Lateral Displacement of Abutment Constructed on Marine Clay Deposits (해안 연약지반상의 교량 구조물 변위 억제)

  • 장용채
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.337-348
    • /
    • 1998
  • Since 1970s, though many effective construction methods have been established to solve soft ground problems which had occurred in the off shore land reclamation and on shore highway construction, lateral movement of structure on soft ground is still a big problem to engineers. In this study an applicability of criteria for determining the lateral movement of the structure in soft ground is examined and most measured data is obtained from 140 bridge abutments in highway construction sites. Characteristics and effectiveness of existing methods that used for deciding amount of lateral movements of abutment are analyzed using the obtained data. From the analysis, a proper method to prevent lateral movement is proposed. This method is confirmed on several case histories which were constructed on marine clay.

  • PDF

A Research on the Reinforced Roadbed Thickness of Concrete Slab Track on Embankment Section (콘크리트 슬래브 궤도 흙쌓기 구간의 강화노반 두께에 관한 연구)

  • Shin, Seung-Jin;Shin, Min-Ho;Park, Jong-Guan;Lee, Il-Wha
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1242-1247
    • /
    • 2007
  • An active application of concrete track is being expected for the future constructions of Korea railroad. For the successful construction and design in embankment section, the roadbed behavior should be reasonably estimated using the proper analysis method. In this research, behaviors of reinforced roadbed constructed with the determined stiffness and thickness at embankment section were estimated through various design parameters and numerical analysis. A three dimensional finite element method was employed to determine the proper reinforced roadbed thickness at embankment section. The displacement and vertical stress caused by train loading were estimated and compared with the field test results. The bearing characteristics of concrete track roadbed were presented. Moreover, the method to determine thickness of reinforced roadbed was proposed.

  • PDF

Development of Database System for Management of Roadbed Settlement in High Speed Railway (고속철도 노반 침하관리를 위한 DB 개발)

  • Choi, Chan-Yong;Kim, Dae-Sang;Lee, Jin-Wook;Shin, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.500-504
    • /
    • 2007
  • Database are developed to control measured settlement data under construction in Gyungbu High Speed Railway from Daegu to Busan. This means that data having different type at different site could be managed in a unified way. The database includes algorithm to evaluate embankment settlement with settlement data at the surface of embankment and ground settlement data. And also, it has a function to analyse the causes of large settlement over allowable level and high settlement speed based on the log data, embankment specification, physical characteristics of embankment materials.

  • PDF