• Title/Summary/Keyword: Embankment behavior

Search Result 173, Processing Time 0.023 seconds

Hydrodynamic Behavior Analysis of Stacked Geotextile Tube by Hydraulic Model Tests (수리모형시험을 통한 다단식 지오텍스타일 튜브의 수리동역학적 거동분석)

  • 신은철;오영인;김성윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.705-712
    • /
    • 2002
  • Geotextile tube is environmentally sustainable technology and has been applied in hydraulic and coastal engineering applications. Geotextile tube is composed in permeable fabrics and Inside dredged materials, and hydraulically or mechanically filled with dredged materials. These tube are generally about 1.0m to 2.0m in diameter, through they can be sized for any application. The tubes can be used solely, or stacked to add greater height and usability. Stacked geotextile tubes will create by adding the height necessary for some breakwaters and embankment, therefore increasing the usability of geotextile tubes. This paper presents the hydrodynamic behavior of stacked geotextile tube by hydraulic model tests. The hydraulic model test conducted by structural condition and wave conditions. Structural condition is installation direction to the wave(perpendicular band 45$^{\circ}$), and wave condition is varied with the significant wave height ranging from 3.0m to 6.0m. Based on the test results, the hydrodynamic behaviors such as structural stability, wave control capacity, and strain are interpreted.

  • PDF

A Study on Influence of Constructed Bridge Abutment in Landfill Slope under Laterally Displacing (측방유동 발생 시 성토사면에 시공된 교대의 영향에 대한 연구)

  • Lee, Hangyu;Hong, Jongouk;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.31-41
    • /
    • 2013
  • The damage caused by lateral movement occurs frequently on site where abutment or retaining wall was built on soft ground along with embankment behind and the study on stability of abutment against lateral movement has been mostly focused on soft ground. However lateral movement occurs not only on soft ground but also on embankment slope which causes the impact on structure. The bridges built in Korea are mostly on mountainous area than soft ground. This study is intended to analyze the ground behavior resulting from lateral movement using finite element analysis method to the section as well as propose the basic data for abutment design on embankment slope through the analysis of the outcome of reinforcement method. As a result, when it comes to the reinforcement with soil surcharge and stabilized pile in slope, lateral movement was reduced by 4~30% and displacement on bearing shoe on abutment was reduced by 2~13%. On the contrary, when reinforced with EPS, lateral float was reduced by 97% and maximum horizontal displacement of bearing shoe on abutment was reduced by 95%. Thus, it's necessary to identify the design technique which is applicable to domestic condition through additional tests and more reliable study using numerical analysis and comparing the measured values shall follow.

Centrifuge Modeling on Lateral Flow of Soft Soils and Displacement of Bridge Abutment on the Composite Ground (복합지반상 교대변위 및 지반 측방유동에 관한 원심모델링)

  • Heo, Yol;Park, Sunghun;Yun, Seokhyun;Kwon, Seonuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • In this study, the centrifuge tests were performed to investigate the lateral flow behavior and stability of the ground improved by SCP. The centrifuge tests were fulfilled in the case of the back of abutment filled by EPS (case 1) and soil (case 2), and the potentiometer was installed on the abutment and embankment to measure the vertical and horizontal displacement at the top of abutment. As a result, the vertical displacement measured at the back of abutment was maximum 2.1 m, which was about 12% if compared with the height of embankment. In the case of the back of abutment filled by soil, the vertical and horizontal displacement measured at the top of abutment was 10 cm and 1.1 m, respectively, which exceeded the allowable horizontal displacement. On the other hand, in the case of the back of abutment filled by EPS, the vertical displacement of abutment did nor occur and the horizontal displacement was 1.4 cm. Therefore, the effect of SCP improvement with EPS method adopted to prevent the lateral flow and assure the stability of embankment on the soft ground was far superior.

  • PDF

A Study on the Consolidation and Creep Behaviors of Soft Foundations Reinforced by Geotextiles (토목기유(土木機維)로 보강(補強)된 연약지반(軟弱地盤)의 압밀(壓密) 및 Creep 거동(擧動)에 관한 연구(研究))

  • Chung, Hyung Sik;Ahn, Sang Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.75-84
    • /
    • 1991
  • When we construct the earth structures such as embankments, on soft ground which are consisted of thick marine silty clay, the foundations deform due to consolidation and creep. For the stabilization of the earth structures constructed on soft foundations, we usually uses the mattress and they play an important role in increasing an ultimate bearing capacity by the dispersion of load of embankment. The purpose of this paper was to predict rationally a long term deformation of earth structures and to contribute to embankment design and maintenance. We determined a rheological model of marine clay from experimental data, and developed a computer program using the chosen model and found out the long term behavior of embankment. The results of this paper are as follows: 1. The developed program can analyze simultaneously consolidation and creep. 2. From the results of creep test, the rheological model of marine silty clay can be represented by the Vyalov model. 3. The displacement of embankment on reinforced foundation were smaller than those of the unreinforced foundation in showing the effects of geotextiles on foundation deformations.

  • PDF

Characteristics of the Expanded Road Embankment Constructed by Lightweight Air-Mixed Soils for a Short-Term (경랑기포혼합토로 단기간에 시공된 확폭도로성토체의 특성)

  • Hwang, Joong Ho;Ahn, Young Kyun;Lee, Young-Jun;Kim, Tae-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.377-386
    • /
    • 2010
  • This study was conducted to find out the characteristics of the expanded road embankment constructed by the lightweight air-mixed soil (slurry density $10kN/m^3$) for a short-term without any ground improvement. Compression strength, capillary rise height of the lightweight air-mixed soil and settlement behavior of soft ground were studied. Compression strengths of the specimens sampled at the site after 1 and 5 months of construction were all satisfied the required strength 500 kPa. However, it was not convinced the homogeneity construction, because the values of strength were depending on the sampled location. Also, strength difference between laboratory and site specimens were found about 19%, and thus it should be considered for mixing design. Capillary rise reached about 20 cm for 70 hours because of a numerous tiny pores existed inside the lightweight air-mixed soil. Relationship between settlement and time of the soft ground placed underneath the expanded embankment was estimated by using the measured data and back analysis technique. The current average consolidation ratio and the final settlement after 120 months later were estimated about 32% and 4.5cm, respectively. This settlement is much less value than the allowable settlement 10cm for this structure.

Elasto-viscoplastic modeling of the consolidation of Sri Lankan peaty clay

  • Karunawardena, Asiri;Oka, Fusao;Kimoto, Sayuri
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.233-254
    • /
    • 2011
  • The consolidation behavior of Sri Lankan peaty clay is analyzed using an elasto-viscoplastic model. The model can describe the secondary compression behavior as a continuous process and it can also account for the effect of structural degradation on the consolidation analysis. The analysis takes into account all the main features involved in the process of peat consolidation, namely, finite strain, variable permeability, and the secondary compression. The material parameters required for the analysis and the procedures to evaluate them, using both standard laboratory and field tests, are explained. Initially, the model performance is assessed by comparing the predicted and the observed peat consolidation behavior under laboratory conditions. The results indicate that the model is capable of predicting the observed creep settlements and the effect of layer thickness on the settlement analysis of peaty clay. Then, the model is applied to predict the consolidation behavior of peaty clay under different field conditions. In this context, firstly, the one-dimensional field consolidation of peaty clay, brought about by the construction of compacted earth fill, is predicted. Then, the two-dimensional peat foundation response upon embankment loading is simulated. A good agreement is seen in the comparison of the predicted results with the field observations.

One-dimensional nonlinear consolidation behavior of structured soft clay under time-dependent loading

  • Liu, Weizheng;Shi, Zhiguo;Zhang, Junhui;Zhang, Dingwen
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-313
    • /
    • 2019
  • This research investigated the nonlinear compressibility, permeability, the yielding due to structural degradation and their effects on consolidation behavior of structured soft soils. Based on oedometer and hydraulic conductivity test results of natural and reconstituted soft clays, linear log (1+e) ~ $log\;{\sigma}^{\prime}$ and log (1+e) ~ $log\;k_v$ relationships were developed to capture the variations in compressibility and permeability, and the yield stress ratio (YSR) was introduced to characterize the soil structure of natural soft clay. Semi-analytical solutions for one-dimensional consolidation of soft clay under time-dependent loading incorporating the effects of soil nonlinearity and soil structure were proposed. The semi-analytical solutions were verified against field measurements of a well-documented test embankment and they can give better accuracy in prediction of excess pore pressure compared to the predictions using the existing analytical solutions. Additionally, parametric studies were conducted to analyze the effects of YSR, compression index (${\lambda}_r$ and ${\lambda}_c$), and permeability index (${\eta}_k$) on the consolidation behavior of structured soft clays. The magnitude of the difference between degree of consolidation based on excess pore pressure ($U_p$) and that based on strain ($U_s$) depends on YSR. The parameter ${\lambda}_c/{\eta}_k$ plays a significant role in predicting consolidation behavior.

Analgesis of Clearly Reinforced Soil Wall Behavior by Model Test (모형시험에 의한 점성토 보강토벽의 거동분석)

  • 이용안;이재열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.85-94
    • /
    • 1999
  • Reinforced Soil Wall has several merits comparing with conventional retaining wall. The conventional method has the limit of wall height, ununiform settlement of the foundation ground, quality assurance of the embankment body, shortening of construction period, economical construction and so on. Basis of previous mentioned things reinforced soil wall is the substitutional method of conventional retaining wall and its necessity is continuously increasing. The embanking material used in reinforced soil wall is generally limited such as a good quality sandy soil, and in many case constructors have to transfer such a good embanking material from far away to construction site. As a result, they would pressed by time and economy. If poor soils could be used embanking material, for example, clayey soil produced in-situ by cutting and excavation, the economical merit of reinforced soil wall would be increased more and more. Likewise, a lot of study about laboratory experimental behavior of reinforced soil wall using a good quality soil is being performed, but is rare study about clayey soil containing much volume of fine particle relatively in korea. In this study, the authors investigated behavior of the geosynthetic reinforced and unreinforced soil walls using clayey soil as embanking material in view of horizontal movement of walls, bearing capacity and reinforcement stress.

  • PDF

Analysis of the Behavior of Concrete Track on Earthwork Considering the Increase in Train Speed (열차속도 증가를 고려한 토공상 콘크리트궤도의 거동 분석)

  • Kim, Jeong-Il;Ahn, Suk-Jun;Kwon, Jong-Wook;Kim, Jin-Il
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3214-3219
    • /
    • 2011
  • HONAM High Speed Railway project is under construction with the target to have 350km/h design speed from Songjeong Gwangju City to Osong. The track for the whole section of the line is scheduled to be a concrete track in order to decrease total life cycle cost (LCC) according to the decrease of track destruction. However, the study on the related parts to increase the train speed up to 400km/h is on going in order to strength the competitiveness of high speed railway. On this study, the stress of track has been analyzed according to the concrete track design method of Eisenmann using equivalent depth theory proposed by Odemark for behavior analysis of concrete track on track bed, which is having embankment deformation characteristics by train load. The behavior analysis of track is performed to analyze the stress of track bed layer and track according to the variation of design load and train speed. And also, the characteristics of concrete track have been figured out by analyzing the parameter according to the thickness of track bed layer.

  • PDF

Modeling the wetting deformation behavior of rockfill dams

  • Guo, Wanli;Chen, Ge;Wu, Yingli;Wang, Junjie
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.519-528
    • /
    • 2020
  • A mathematical wetting model is usually used to predict the deformation of core wall rockfill dams induced by the wetting effect. In this paper, a series of wetting triaxial tests on a rockfill was conducted using a large-sized triaxial apparatus, and the wetting deformation behavior of the rockfill was studied. The wetting strains were found to be related to the confining pressure and shear stress levels, and two empirical equations, which are regarded as the proposed mathematical wetting model, were proposed to express these properties. The stress and deformation of a core wall rockfill dam was studied by using finite element analysis and the proposed wetting model. On the one hand, the simulations of the wetting model can estimate well the observed wetting strains of the upstream rockfill of the dam, which demonstrated that the proposed wetting model is applicable to express the wetting deformation behavior of the rockfill specimen. On the other hand, the simulated additional deformation of the dam induced by the wetting effect is thought to be reasonable according to practical engineering experience, which indicates the potential of the model in dam engineering.